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Chapter 1

Executive summary

With the preparation of the 10th Multi-annual Financial Framework (MFF) for the period
after 2027, Horizon Europe is developing a renewed work programme whose primary aim is
to support the entire innovation cycle-from fundamental research to the commercialization of
results. Advancing research from basic science to market deployment demands increased fund-
ing, improved research frameworks, stronger collaboration between industry and academia,
and effective mechanisms to bridge technological gaps.

The FP10 discussions are unfolding amid growing concerns about Europe’s capacity to
sustain its global competitiveness. As the EU seeks to boost technological sovereignty and
reduce dependence on third countries, FP10 emerges as a critical instrument for strengthen-
ing innovation ecosystems and consolidating industrial leadership. In this context, the EU
COST Action BEiNG-WISE1 is investigating both conventional and unconventional wireless
cybersecurity solutions that span technical, regulatory, and social dimensions.

As communication technology evolves at an extraordinary pace, its role in relation to end
users is also transforming, taking on an increasingly foundational and pervasive character.
Next-generation wireless networks are reshaping how people, devices, and critical infras-
tructure connect, communicate, and operate. The demands for ultra-low latency, massive
scalability, and pervasive intelligence are accelerating, while simultaneously introducing new
challenges in ensuring trust, security, and resilience.

Emerging technologies – including Artificial Intelligence (AI), novel signal processing
methods, quantum computing, and Optical Wireless Communications (OWC) – are con-
verging within the 6G paradigm. This rapidly changing technological reality underscores the
necessity of analyzing communication systems from the ground up. A bottom-up perspective
enables a detailed understanding of physical architectures and their implications for users
from the user and by the user perspective.

In this White Paper, entitled “Emerging Cybersecurity Paradigms in Wireless Networks:
Physical Layer Innovation, Trust, and AI-Enhanced Defenses,” innovative infrastructures are
examined comprehensively, spanning the physical layer to the application layer and the asso-
ciated services. This first chapter is particularly critical, as the evolution of communication
systems has demonstrated that the new gold of the modern era – namely, data – is being
generated and exchanged at unprecedented speed and volume. This dynamic environment re-
quires the development of new concepts of trust, a deeper understanding of evolving threats,
and the creation of protection mechanisms that prioritize automation through AI systems
and the protection of privacy by design.

1https://beingwise.eu/publications/deliverables/first-year-deliverable/
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1.1 White paper compilation and structure

This White Paper, Emerging Cybersecurity Paradigms in Wireless Networks: Physical Layer
Innovation, Trust, and AI-Enhanced Defenses, presents 24 state-of-the-art contributions that
collectively advance the capabilities of next-generation wireless systems. Reflecting the col-
laborative efforts of researchers across multiple disciplines, it provides a comprehensive per-
spective on the opportunities and challenges shaping 5G, 6G, and beyond.

Organized into four thematic chapters, the document explores how physical innovation,
trust, cybersecurity, and intelligence converge to create networks that are secure, adaptive,
and dependable. By combining technical innovation with policy alignment, regulatory consid-
erations, and adaptive strategies, this White Paper offers an integrated reference for academic
researchers and policymakers.

Purpose and Audience This White Paper aims to:

• Inform readers about the latest technological developments, emerging threat land-
scapes, and innovative AI-driven defense strategies.

• Guide decision-making in policy, standardization, and implementation by consolidating
knowledge on trust frameworks that influence regulatory compliance and support the
consideration of risks.

• Inspire new research directions at the intersection of infrastructure, security, privacy,
and intelligent automation.

Why Read This Document? As wireless ecosystems rapidly evolve, traditional ap-
proaches to trust, resilience, and security are no longer sufficient. This White Paper enables
the reader to understand:

• How foundational infrastructure advances are expanding both capabilities and attack
surfaces.

• Why trust must be dynamic, measurable, and embedded across every layer of the
network.

• How AI and Federated Learning (FL) are transforming operational models and threat
vectors.

• Which multidisciplinary strategies will be needed to secure hyper-connected environ-
ments sustainably.

1.1.1 Chapter Overviews

Infrastructure and Physical Layer Innovation Chapter 2 lays the foundation by
examining how emerging technologies – such as terahertz radio interfaces, photonic-based
millimeter-wave front-haul, and quantum-compatible satellite links – are converging to cre-
ate high-performance, ultra-low latency communication infrastructures. It highlights the
resulting expansion of the attack surface and introduces energy-efficient security techniques,
physical layer protection strategies, and quantum-secure communication methods to reinforce
network integrity. Contributions explore topics including:

• Energy-efficient physical layer security for sustainable wireless systems
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• Security of optical wireless networks

• Hybrid millimeter-wave photonic links

• Quantum-secure communications

Foundations of Trust and Future Network Integrity Chapter 3 builds upon the tech-
nical foundations laid out in Chapter 2, establishing key principles, governance frameworks,
and dynamic zero-trust models essential for dependable 6G operations. It examines how
trust can be assessed, measured, and operationalized across complex, multi-vendor ecosys-
tems while ensuring privacy and regulatory compliance. The contributions in this chapter
address topics including:

• Metrics and methods for trustworthy networks

• Network robustness and resilience measurement

• Trust-aware network management

• The interplay between privacy regulations such as NIS2 and GDPR

• Supply chain cybersecurity

Evolving Threats and Protective Strategies Chapter 4 delves into the dynamic se-
curity landscape of next-generation wireless infrastructures. As AI-driven services and per-
vasive connectivity create new vulnerabilities, the contributions examine both technical and
human-centered defenses. It reviews innovations in security protocols, advanced fingerprint-
ing techniques, and vertical-specific challenges in domains such as the Internet of Medical
Things and aviation networks. Contributions explore topics including:

• Security protocol innovations and implementation challenges

• Website and RF fingerprinting

• Spoofing attacks in localization

• Human-centric cybersecurity considerations

• IoMT security

• Wireless network security in aviation

Intelligence at the Edge: AI and Federated Learning Focusing on distributed in-
telligence and privacy-preserving approaches, Chapter 5 investigates how federated learning
is redefining scalability and data protection while introducing novel attack surfaces. It dis-
cusses the dual role of large language models as both enablers of sophisticated attacks and
defensive tools, and highlights the need for energy-efficient, resilient, and deception-aware
learning frameworks. Contributions explore topics including:

• Data and model security in communication networks

• Adversarial defense strategies

• Privacy and energy challenges in federated intrusion detection

• Backdoor and poisoning attack mitigation

9



1.2 Methodology for Collection and Assessment of Contribu-
tions

All contributions to this volume were collected through an open call for papers distributed
to the participating experts and Working Group 1 members for Cybersecurity in emerging
wireless communications of the BEiNG-WISE Cost Action. The evaluation process was
designed to be inclusive, constructive, and transparent, focusing on enhancing the quality of
each submission rather than exclusion.

1.2.1 Evaluation Instructions and Process

Main Objective The primary goal was to provide constructive feedback that would help
the authors improve their contributions.

Submission Type Non-blinded; author names and affiliations were included, and the as-
signed reviewer was also visible to the authors.

Process: The compilation of this White Paper involved a structured two-round review
process to ensure the quality and consistency of all contributions.

Key Aspects Considered

• Relevance: Alignment with the Working Group 1 (BEiNG-WISE) objectives outlined
in the call for papers.

• Structure Compliance: Each contribution was expected to follow the prescribed format:
Introduction, State of the Art, Challenges, and Future Work.

• Content Focus: Submissions were evaluated based on their ability to present the current
state of the art and open questions, rather than solely the authors’ own solutions or
perspectives.

• Plagiarism & AI-Generated Content: Reviewers assessed originality, verified references
for credibility, and flagged any significant AI-generated content.

Reviewer-Author Communication Reviewers provided feedback directly to the corre-
sponding authors via email, facilitating iterative refinement throughout both review rounds.
All correspondence included the editors in copy for transparency.

1.2.2 Disclaimer

The book editors, chapter editors, and reviewers have undertaken a careful editorial process
to ensure that each contribution in this volume reflects the current state of the art in its
respective field. Nonetheless, responsibility for the content, accuracy of references, and sci-
entific credibility of each section lies exclusively with its authors. The scientific contributions
represent the findings of the respective authors and do not necessarily reflect those of the
editors, reviewers, or publisher.
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Chapter 2

Infrastructure and Physical Layer
Innovation

2.1 Introduction
Chapter Editors: Stanislav Zvánovec 1, Beatriz Ortega 2

1 Czech Technical University In Prague, Czech Republic
2 Universitat Politècnica de València, Spain

The sixth and seventh generation wireless infrastructures aim to integrate new tech-
nologies like terahertz radio interfaces, photonic-based millimeter-wave fronthaul lines, and
quantum-compatible satellite segments into a single ecosystem. Using such an architecture,
a wide range of services requiring sub-millisecond latency can be performed simultaneously,
from remote high-precision surgical applications to real-time digital twin scenarios and holo-
graphic communications. In the envisaged hyper-connected environment then billions of end
nodes will continuously generate data through energy-harvesting sensors. However, the diver-
sification of physical transmission environments and the multi-layering of network topology
expand the attack surface, causing new vulnerabilities to emerge at all critical points, from
optical components to cloud-based core components. Since classical, layer-limited defense ap-
proaches will be insufficient to respond to this speed and complexity, it seems inevitable that
security should be considered as an autonomous design dimension that can measure the state
of the network in real time, anticipate threats and respond dynamically, and simultaneously
consider energy efficiency and quantum-era vulnerabilities.

This section examines breakthroughs in energy-efficient security techniques, advanced
signal processing, and quantum-secure communications. Collectively, these innovations rein-
force the capacity of future networks to sustain quality, integrity, and scalability in complex
environments. Recent studies have shown that the security of the next-generation mobile
architecture should be ensured not only by upper-layer protocols but also across the entire
physical diversity of the transmission medium. Therefore, the Chapter starts focusing on
physical layer security (PLS) strategies for next-generation wireless networks and provides
insight on PLS for optical wireless networks. In the following sections, we will delve deeper
into the security challenges of millimeter wave-based photonic links and provide an overview
of secure quantum communication.
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2.2 Energy-Efficient Physical Layer Security Strategies for Sus-
tainable Next-Generation Wireless Systems

Authors: Miranda Harizaj1, Nazli Tekin2, Igli Bisha1
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2 Erciyes University, Türkiye

2.2.1 Introduction

Next-generation wireless systems, encompassing 5G and the emerging 6G technologies, repre-
sent a significant leap forward in terms of data rate, latency, and device connectivity. These
advancements enable a wide range of applications, from autonomous vehicles and smart cities
to industrial IoT and immersive virtual reality. However, the unprecedented scale and com-
plexity of Next-Generation Wireless Systems (NGWS) also introduce new security vulnerabil-
ities, especially at the physical layer. Traditional cryptographic methods, while foundational,
may not be sufficient on their own to counter sophisticated eavesdropping and interference
threats, particularly those exploiting the broadcast nature of wireless communications [1].

To address these concerns, Physical Layer Security (PLS) has emerged as a promising
paradigm, leveraging the characteristics of the wireless channel such as fading, noise, and
channel state information to enhance data confidentiality. Techniques like artificial noise in-
jection, beamforming, cooperative jamming, and Intelligent Reflecting Surface (IRS)-assisted
communications have shown considerable potential in fortifying wireless transmissions against
eavesdroppers [2, 3]. However, these approaches often come at the cost of increased energy
consumption, which is especially problematic for battery-powered and energy-harvesting de-
vices that characterize many edge and IoT deployments [4].

Enhancing security while minimizing energy overhead is vital not only for network re-
silience but also for user experience, particularly in scenarios where battery life is a decisive
factor [4]. Recent studies have emphasized the need for adaptive and context-aware PLS
strategies that can intelligently manage transmission power, antenna configurations, and se-
curity levels based on real-time threat assessment and energy availability [5]. In this context,
hybrid solutions that combine lightweight cryptographic primitives with PLS techniques are
gaining traction for their ability to balance complexity, energy use, and robustness [6].

Moreover, the integration of energy harvesting technologies such as solar, Radio Frequency
(RF), and kinetic energy into secure communication frameworks offers a sustainable pathway
for maintaining long-term security operations. These systems can operate continuously with
minimal dependence on traditional power sources, making them ideal for remote, unattended,
or mission-critical applications [7]. Despite this progress, challenges remain in achieving
scalable, real-time, and secure communication in heterogeneous network environments. This
paper aims to provide a focused review of the latest advancements in energy-efficient PLS
for NGWS, with particular attention to adaptive techniques, IRS-based architectures, and
hybrid PLS-cryptographic models. It also highlights the current gaps in practical deployment
and proposes directions for future research toward building secure, energy-conscious, and
sustainable wireless ecosystems.

2.2.2 State of the Art

The rapid evolution of next-generation wireless systems, including 5G and emerging 6G tech-
nologies, has prompted significant research into secure and energy-efficient physical layer
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solutions. Physical Layer Security (PLS) has emerged as a viable strategy for safeguarding
communications against threats such as eavesdropping and jamming by exploiting the ran-
domness of wireless channels. However, the energy demands of conventional PLS techniques
such as artificial noise generation, beamforming, and cooperative jamming raise concerns
regarding their applicability in energy-constrained environments [4].

To address these concerns, the use of Intelligent Reflecting Surfaces (IRS) has gained
prominence. IRSs offer a passive yet programmable means of manipulating wireless propa-
gation environments, thereby enhancing secrecy capacity without the need for active trans-
mission. Studies [8] have illustrated the energy-saving potential of IRS-assisted secure com-
munication systems, making them highly relevant for sustainable Internet of Things (IoT)
and low-power networks. Building upon earlier studies, recent work presents a comprehen-
sive Reconfigurable Intelligent Surface (RIS) aided PLS framework specifically designed for
6G-enabled IoT environments, which integrates passive beamforming, artificial noise gener-
ation, and cooperative strategies to enhance physical layer security while preserving energy
efficiency [9]. This approach further supports the role of RIS as a viable solution for se-
cure, scalable, and low-power IoT deployments within future NGWS. Energy efficiency and
security in IoT deployments have also been addressed through cross-layer designs. A recent
review [10] highlights multi-layer frameworks that combine lightweight cryptographic mea-
sures with adaptive physical layer techniques, enabling robust and sustainable security in
ultra-dense device networks.

Additionally, hybrid PLS-cryptographic solutions are being investigated as a means to re-
duce the computational burden while maintaining high security assurance. These approaches
combine lightweight encryption schemes with channel-based security measures to achieve a
balance between energy consumption and resilience [11].

The integration of energy harvesting into PLS frameworks is another key trend. Devices
powered by ambient sources such as solar, (Radio Frequency) RF, or kinetic energy can
maintain continuous security operations without frequent battery replacement. Research has
shown that adaptive protocols, which align security levels with real-time energy availability,
significantly improve sustainability in low-power deployments [7].

Recent developments also emphasize the role of Fluid Antenna Systems (FAS) in enhanc-
ing PLS for Wireless Powered Communication Networks (WPCNs), which offer dynamic
adaptation to both external and internal eavesdropping threats while maintaining energy
efficiency. It is demonstrated that FAS-equipped users can significantly improve secrecy per-
formance under energy-constrained scenarios [12].

Recent advances also explore the potential of federated learning and Artificial Intelligence
(AI)-based optimization to dynamically adjust transmission strategies in response to channel
variations and threat conditions. These intelligent, distributed mechanisms support real-time
adaptability, a critical requirement for heterogeneous NGWS environments [13].

Table 2.1 summarizes recent contributions in energy-efficient physical layer security for
NGWS.

2.2.3 Conclusion – Challenges and Future Work

This White Paper explored current strategies for achieving energy-efficient PLS in NGWS,
with a focus on IRS-assisted techniques, energy harvesting, and hybrid PLS-cryptographic
approaches. While these solutions offer promising gains in both security and energy efficiency,
several challenges remain. These include limited scalability, lack of real-time adaptability,
and difficulties in integrating energy-aware PLS strategies into cross-layer architectures. Ad-
ditionally, many techniques rely on ideal conditions that may not reflect practical deployment
environments.
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Table 2.1: Recent Contributions to Energy-Efficient Physical Layer Security in NGWS.

Paper Focus Area Key Technique Energy Efficient Application Con-
text

Wei et al.
(2020) [4]

Conventional PLS Artificial Noise, Beam-
forming, Jamming

✗ General Wireless
Networks

Ihsan et al.
(2022) [8]

IRS-assisted PLS Passive Beamforming
via IRS

✓ Sustainable IoT

Xing et al.
(2024) [9]

RIS-enhanced PLS Passive Beamforming,
Cooperative Jamming,
Artificial Noise

✓ 6G-enabled IoT

Mustafa et al.
(2024) [10]

Cross-Layer Security Lightweight Crypto +
Adaptive PLS

✓ Dense IoT Networks

Popoola et al.
(2024) [11]

Hybrid Security Lightweight Encryp-
tion + Channel-Based
PLS

✓ Smart Home Health-
care

Pan et al.
(2021) [7]

Energy Harvesting +
PLS

Differential Privacy +
IRS-Aided Harvesting

✓ 6G IoT with Ambient
Energy

Ghadi et al.
(2025) [12]

FAS-aided PLS Beamforming with
Fluid Antennas

✓ Wireless Powered
Networks

Hu et al.
(2025) [13]

AI-Optimized PLS Federated Learning +
Model Segmentation

✓ Heterogeneous Edge
IoT

Future efforts should prioritize the development of standardized, scalable frameworks for
secure NGWS that can operate under resource-constrained conditions. AI-driven adaptive
control, cross-layer integration, and testbed validation are key to ensuring that energy-efficient
PLS solutions can be translated from theory to real world impact. Addressing these gaps will
be crucial to building resilient, secure, and sustainable 6G and IoT infrastructures.
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2.3.1 Introduction

Wireless-based Internet of Things (IoT) assists in developing and implementing smart indoor
environments (i.e., homes, offices, hospitals, and industries) by interconnecting smart devices
and humans, as part of the 5th generation (5G) and beyond wireless networks. Optical
wireless communication (OWC) has emerged as a complementary technology or an alter-
native to existing radio frequency (RF)-based wireless networks to meet the growing traffic
demands at many levels from indoor to outdoor applications. In indoor environments, the
OWC technology can use both the visible and infrared light spectrums, offering a very broad
bandwidth for a range of applications. Light emitting diode (LED)-based lighting fixtures
together with photodetectors and image sensors (i.e., cameras), commonly referred to as vis-
ible light communications (VLC) and optical camera communications (OCC), can be used
to establish wireless links in IoT devices and applications. It is possible to achieve a secured
network by ensuring that the availability, integrity, and confidentiality (AIC) triad is satisfied,
however, networks that contain IoT nodes, can frequently be subject to breaches of security.
Though OWC offers inherent security, there are still several vulnerability issues. In general,
the security requirements for OWC are the same as those for other wireless networks, that
is to protect data being transmitted from attacks such as eavesdropping, denial of service or
jamming, node compromise attacks, etc. Indoor VLC broadcasts data within limited space
in rooms however wide beams and reflected and scattered light can be received by eavesdrop-
pers (Eve). Outdoor OWC can be detected by Eve being close to the receiver or in case of
scattered light even off the beam propagation, systems can be jammed and interfered with.

To ensure secure transmission of data over wireless channels, classical methods employ
key-based cryptography for end-to-end encryption and decryption while the physical layer
(PHY) is responsible for ensuring the reliability of the communication links between entities
in a shared collision domain, e.g., two terminals in point-to-point links or terminals within
wireless local area networks. By utilizing the physical channel, PLS limits the amount of
information that can be extracted at the bit level by the eavesdropper. Typically, the PHY
ensures reliable communication between legitimate users, while the upper layers, i.e., the net-
work layer, protect and secure the data. However, with the expansion of broadcast networks,
new techniques leveraging the PHY have emerged to enhance secure communication. PLS
has emerged as a promising approach to limit the information accessible to eavesdroppers by
exploiting the randomness of noise, channel state information (CSI), and various resources,
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Figure 2.1: PLS schemes within OWC.

such as multi-antenna systems and cooperative nodes. In OWC systems, there are several
PLS approaches to improve vulnerabilities as indicated in Fig. 2.1 for VLC, OCC, free space
optics, and hybrid networks. The following sections bring a summary of state-of-the-art and
future directions within OWC PLS.

2.3.2 State of the Art in OWC-based Physical Layer Security

Secret key generation

Access to a shared source of randomness can be exploited to generate secret keys between
multiple agents by selectively choosing the samples from the shared source of randomness
that provide an advantage with respect to potentially malicious agents [1]. Similarly, channels
that present asymmetry between legitimate end agents and eavesdroppers (known as wiretap
channels) can be also exploited for secret key agreements in a similar way, by distilling only
those key segments in which the legitimate agents estimate that they had an advantage over
the eavesdropper [1]. In [2], the authors report an implementation of a secret key generation
scheme that uses deep learning to provide joint channel estimation and quantization, while
the information reconciliation is based on the error correction approach.

PLS within VLC

In recent years, PLS in VLC has become an important area of research to improve privacy
in wireless networks and work alongside encryption techniques used at higher network layers.
The secrecy capacity of a VLC network is shown to be much higher than that of a WiFi
network, mainly because of the unique properties of the THz band [3]. Since light cannot
pass through walls, VLC networks can easily control the area’s efficiency and security based on
specific needs. Additionally, OWC networks do not experience small-scale fading, meaning
the channel conditions are mostly determined by the positions of the transmit LEDs and
receive PDs. This makes it possible to predict the channel response for the legitimate user
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(Bob) if the optoelectronic characteristics of the LEDs, PDs, and Bob’s 3D position are known
to Eve. In the research, PLS in VLC is addressed using techniques like (i) beamforming, (ii)
friendly jamming, (iii) mapping, and combinations of these methods.

Security vulnerabilities within VLC

Recently it has been demonstrated that VLC is prone to certain types of attacks, exploiting
the fact that VLC is a wireless technology. For instance, by following the principle “what
you see is what you get”, which is very related to VLC, malicious nodes can intercept the
visible light signals and create confidentiality issues or impersonation attacks. Authors in [4]
demonstrated the feasibility of eavesdropping attacks, by showing data leakage. The inter-
esting point to be considered and addressed in the context of VLC is that current solutions
developed for RF-based systems are in general not directly applicable, due to the specific
features of VLC. This makes it clear that new approaches, conceived by keeping in mind the
key properties of VLC systems, need to be developed. It is with this principle in mind, that
authors in [5] proposed and implemented LIBERO, an acronym of LIght Bias as an effective
countermeasure against EavesdROpper attacks. The principle is simple, while effective. The
idea is to implement a light-bias approach, to secure the communication system between a
transmitter and a receiver. This light bias results in a signature for the end-to-end commu-
nication. Hence, the point is that with a predefined frequency the mapping between symbols
and bits change over time and, even though the eavesdropper may detect the right symbol,
it is not able to map it into the right bit sequence.

Moreover, in camera receiver-based VLC, i.e., OCC, steganography can be introduced as
the technique of embedding secret information within optical signals, such as light or image
data, transmitted via a camera system. This technique enables secure communication by con-
cealing messages in a way that makes them undetectable to the human eye, yet recoverable by
a receiver using specialized methods. It leverages the inherent properties of optical systems,
such as modulation of light intensities or altering pixel values in images, to hide data without
disrupting the normal functioning of the communication system. This approach finds ap-
plications in secure data transmission, surveillance, and watermarking. Recent studies have
explored various methods to enhance the robustness and efficiency of optical steganography
in the context of camera-based communications [6].

Visible light positioning and localization

OWC is a technology that has the property of spatial confinement as an inherent property
which leads to two attractive application domains: i) deployment of dense, parallel commu-
nication channels that are nicely separated in space, which is especially attractive in IoT
environments where a large number of nodes are involved, and ii) indoor positioning. This
property makes eavesdropping in adjacent rooms becomes close to impossible. Moreover, by
logging the initial position of the legitimate user and embedding this information in the light
communication data, eavesdropping can be suppressed. Integrating Visible light positioning
(VLP) and PLS allows precise user location tracking while protecting data from interception
and attacks. This integration allows for secure and accurate positioning in environments
like indoor settings, where both the location of devices and the confidentiality of the data
are critical, especially for future communication systems like 6G. In specific cases, narrow
optical beams’ steering can be further used to minimize the area for eavesdropping. A novel
single LED-based uplink VLP scheme with singular value decomposition beamforming was
investigated in [7], to overcome challenges such as (i) raw data processing for camera-based
positioning, (ii) extra image and video processing tools, and (iii) addressing privacy concerns

20



related to cameras in public places.

PLS and Security vulnerabilities within Free Space Optics

Point-to-point FSO links provide an inherently asymmetrical channel if the elements are
properly aligned and reflections are accounted for. In the presence of an eavesdropper, the
system can always be assessed from the PLS point of view using a wiretap channel model. A
theoretical analysis of the security of an FSO link in terms of the secrecy capacity is provided
in [7]. In a point-to-multipoint link, e.g., Li-Fi, the optics of the transmitter provide a large
coverage area, thus making the channels symmetric for a legitimate user and an eavesdropper.
Using custom and tunable optical elements at the transmitter device, beamforming techniques
can be implemented to create the asymmetry required for PLS. An analysis of the PLS of
OWC systems is provided in [8] in terms of the secrecy outage probabilities and secrecy
capacities under different attack scenarios. In [9], the security of simultaneous lightwave
information and power transfer is analyzed.

Potential side-channels available in an FSO link are: (i) hidden receiver nodes behind or
close to the legitimate receiver node; (ii) reflections coming from the receiver optics or other
reflective surfaces (iii) stray signals coming from scattered or refracted beams, either close to
the transmitter of to the receiver. In all of these cases, the attack model at the physical layer
is modeled using Wyner’s wiretap channel or, in the case of exploiting the turbulent nature
of the atmosphere, a time-varying version of the same model.

Hybrid networks, IoT including OWC

In environments with a high density of users, such as stadiums, airports, shopping malls,
etc., multiple RF access points can lead to interference and degrade system performance.
Integrating OWC with RF in hybrid networks mitigates this issue by utilizing existing light-
ing infrastructure for data transmission. The hybrid OWC/RF networks enhance data rates,
minimize RF interference, and offer a cost-effective solution, making them well-suited for
high-density user scenarios. However, as hybrid OWC/RF networks combine both optical
and radio frequency technologies, addressing security concerns is crucial to prevent potential
vulnerabilities arising from the open and broadcasting nature of OWC and the susceptibility
of RF to eavesdropping and interference. Moreover, for all-optical hybrid wireless communica-
tion systems, zero-forcing beamforming approach and a minimum power allocation algorithm
was provided to overcome the physical layer security challenges [10].

The PLS aspects of hybrid OWC/RF communication systems have been widely analyzed
in recent literature, primarily in terms of secrecy capacity and secure outage probability
performance [11]. Novel PLS algorithms based on zero-forcing beamforming techniques have
been proposed for hybrid VLC/RF in order to mitigate eavesdropping on both RF and VLC
networks [12]. Additionally, energy harvesting [13] and intelligent reflecting surface (IRS) [14]
have been introduced into hybrid VLC/RF to improve PLS characteristics.

2.3.3 Conclusion - Challenges and Future Work

PLS in OWC faces several challenges such as (i) vulnerability to eavesdropping due to the
broadcast nature of light signals, especially in open or shared spaces and (ii) channel variations
caused by obstacles, scattering by particles (fog, dust, etc) within the area optical beams have
to pass, reflections, and user mobility can affect secure transmission. Implementing advanced
encryption and beamforming techniques requires complex signal processing and additional
computational resources. Future research should focus on developing adaptive PLS schemes
that can dynamically adjust to changing environments. Machine learning and AI can enhance
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security by predicting and mitigating potential threats. Moreover, integrating PLS with VLP
and multiple-input multiple-output techniques can further strengthen data protection in 6G
and beyond communication systems.
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2.4.1 Introduction

As 5G mobile networks continue to be deployed worldwide, both academia and industry are
focusing on the future development of 6G systems. The evolution of mobile communications
is driven not only by increasing mobile traffic and subscriptions but also by emerging applica-
tions such as immersive reality, interactive holography, and multisensory internet experiences.
To address these demands, 6G technological enablers can be categorized into key areas: new
spectrum, air interface, networking, architecture, and a fundamental paradigm shift [1].

Since enhanced mobile broadband (eMBB), ultra-reliable low-latency communications
(URLLC), and massive machine-type communications (mMTC) will compete within the In-
ternet of Everything (IoE), the 3G Partnership Project (3GPP) has introduced Releases
16 and 17 to enhance 5G New Radio (5G-NR) [2]. These advancements aim to meet the
rigorous performance demands of future 6G systems, introducing three new scenarios: ubiq-
uitous MBB (uMBB) for seamless global connectivity, ultra-reliable low-latency broadband
communication (ULBC) for high-throughput, low-latency applications, and massive URLLC
(mULC), which merges mMTC and URLLC capabilities. Thus, future networks must meet
stringent Key Performance Indicators (KPIs), including 1 Gbps user experience, peak data
rates of 1 Tbps, latency as low as 10 µs, and connectivity density of 10 7 devices per km 2 [3].

Millimeter-wave (mmW) technology, first introduced in 5G new radio (NR), remains cru-
cial for 6G networks due to its vast bandwidth, new air interface, and the adoption of open-
radio access networks (O-RAN). Analog radio-over-fiber (RoF) solutions ensure seamless
mmW signal transport, supporting low-latency and high-bandwidth links, particularly in
small-cell environments where optical infrastructure costs are critical. The centralized net-
work architecture consolidates baseband units (BBUs) at the central office (CO), optimizing
resource allocation and extending coverage through remote radio heads (RRHs). Microwave-
photonics-based techniques offer low phase noise, frequency tunability, and reduced reliance
on electronic components, enabling cost-effective, low-latency, and high-bandwidth solutions.
Among them, optical frequency multiplication using a Mach-Zehnder modulator (MZM) bi-
ased for carrier suppression (CS) has proven to be an effective approach for generating mmW
signals. The use of a directly modulated laser (DML) with a CS-MZM is considered a promis-
ing solution for energy-efficient network deployment, as it provides a significant electrical gain
in remotely generated mmW signals due to the combined effects of DML chirp and fiber dis-
persion [4].

Moreover, wireless mmW communications provide enhanced security through their in-
herent physical properties and advanced signal processing techniques. Due to their high
frequency, mmW signals experience rapid attenuation and limited propagation, reducing the
risk of eavesdropping over long distances. Their narrow beamwidth enables highly directional
transmissions, making it difficult for attackers to intercept signals without being physically
aligned with the communication path. Additionally, mmW systems leverage beamforming
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and spatial diversity, further minimizing unauthorized access. The high absorption of mmW
signals by obstacles like walls enhances physical security by preventing signal leakage out-
side intended areas, which can even be reduced by operating at specific frequency regions
of oxygen resonances (50-70 GHz, 118 GHz) or water vapour resonances (22.2 GHz). Ad-
vanced encryption and frequency agility in mmW networks add extra layers of protection
against jamming and spoofing attacks. Moreover, the integration of secure beamforming and
adaptive modulation techniques allows real-time adjustments to mitigate interference and
potential threats. The complexity of mmW hardware and signal processing also raises the
barrier for adversaries attempting unauthorized access. Emerging technologies, such as in-
telligent reflecting surfaces (IRS), further improve security by dynamically controlling signal
paths.

2.4.2 State of the Art

Full-duplex RF signal transmission is essential for real-world applications, but many solutions
require a laser source at the RRH for uplink (UL) transmission, increasing complexity and
cost. This challenge can be addressed through carrier aggregation or wavelength reuse in
centralized networks. To mitigate high-frequency distortion and bandwidth demands in the
UL, mmW networks often transmit signals at lower frequencies. Various techniques, such as
four-wave mixing and drop-filter demultiplexing, have been explored for remote local oscillator
(LO) delivery. Recently, directly modulated lasers (DMLs) have been used in bidirectional
photonic fronthaul links with external modulation for mmW signal generation, offering a
simple, cost-effective, and high-performance solution for future 6G networks [5].

Among the centralized approaches for implementing photonics-assisted bidirectional mmW
networks, a recently proposed system utilizes phase modulation (PM) technique [6] at both
the CO and RRH to enable optical frequency up-conversion of the downlink (DL) signal and
optical modulation of the down-converted UL signal, as shown in Figure 2.2. Compared to
intensity modulators, PM offers key advantages, including stable DL up-conversion and cen-
tralized UL optical carrier generation from the CO with low modulator losses. Additionally,
the system implements frequency down-conversion of the 40 GHz UL signal using an optically
generated LO at the RRH, while the tunable laser source (TLS) for UL data transmission
remains at the CO, simplifying remote site equipment. An optical waveshaper functions as a
programmable filter, supporting DL frequency up-conversion, LO generation, and UL optical
carrier provision. Insets in Figure 2.2 allow us to follow the signal generation basics showing
the spectrum of CS modulated signal after PM1 and spectra at photodiodes in the RRH
where each optical carrier is selected for mmW signal generation at photodiode PD1 and LO
signal generation at PD2.

The downconverted UL mmW signal is employed to phase modulate the TLS optical
carrier at RRH and the signal is recovered after UL transmission and demultiplexing at the
CO. The details of the DL and UL recovered electrical spectra and signal constellation are
also shown as insets in Figure 2.2.

Figure 2.3 shows a photograph of the experimental setup. Validation measurements over
a 10 km standard single mode fiber (SSMF) and 1.1 m long radio wireless links tested 64-
quadrature amplitude modulation (64-QAM) at 41 GHz for the DL and quadrature phase shift
keying (QPSK) at 40 GHz for the UL. The system successfully transmitted up to 200 MHz
bandwidth for both modulation formats while maintaining error vector magnitude (EVM)
well below the specified threshold, as shown in Figure 2.3 (b) and (c), for different received
electrical power (ReP) in the DL and UL, respectively [6]. The DL in the full configuration,
which outperforms the system without antennas, shows consistent performance trends, re-
gardless of whether the uplink (UL) is active and requires a minimal ReP of -43 dBm for
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Figure 2.2: Schematic of the experimental setup of the PM-based full-duplex mmW fronthaul
link with LO delivery for UL down-conversion. Insets show the optical (i-v) and electrical
(vi-ix) spectra at different points. Insets (x) and (xi) shows received constellations at DL and
UL, respectively [6].

successful transmission. In the UL, the Radio + OB2B configuration achieves the highest
signal-to-noise ratio (SNR) in contrast with the Full Link scenario with the DL ON.

In contrast, in the UL characterization, the SNR diminishes, i.e., EVM increases, for
the Full Link scenario. Note that a bidirectional transmission system with optical carrier
reuse, reflections and Rayleigh backscattering leads to undesirable degradation since the phase
noise of the optical carrier could be converted to intensity noise through the abovementioned
interferences. However, measured EVM values remain below the threshold and successful
transmission is demonstrated across the range of ReP values. Moreover, further tests in full-
duplex operation with 5G-NR orthogonal frequency-division multiplexing (OFDM) signals at
100 MHz bandwidth showed EVM values as low as 5.2 % for the DL and 6.9 % for the UL,
demonstrating the effectiveness and robustness of the proposed solution.

The security in mmW wireless communications leverages advanced physical-layer secu-
rity techniques, beamforming, and cryptographic mechanisms to mitigate threats. Emerging
technologies, such as IRS and reconfigurable metasurfaces, enhance security by dynamically
shaping signal propagation and minimizing interception opportunities [7]. Physical-layer se-
curity techniques, including artificial noise injection and secrecy coding, further strengthen
protection against passive and active attacks. In Simultaneous Wireless Information and
Power Transfer (SWIPT), IRS optimizes beamforming to ensure secure energy and data
transmission, reducing signal leakage. Integrating IRS with Non-Orthogonal Multiple Access
(NOMA) in Integrated Sensing and Communication (ISAC) systems has improved the sum
secrecy rate, making secure multi-user communication more efficient. Active RIS further en-
hances secrecy by amplifying desired signals while suppressing potential threats, particularly
in high-frequency mmW and THz bands. In 6G networks, RIS creates adaptive and recon-
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Figure 2.3: (a) Photograph of the experimental setup, EVM measurements at mmW fre-
quency of 41 GHz versus ReP under OB2B and Full Link (UL ON), and Full Link (UL OFF)
operation for DL (b) and UL (c). The former one also shows EVM after fiber propagation
(SSMF).

figurable channels that prevent unauthorized access, offering privacy-preserving solutions by
obscuring signal paths and user locations.

Emerging security approaches, such as packet erasures and directional beamforming, show
great promise for secure key exchange in 6G and autonomous vehicle networks. To counteract
computational attacks in mmW networks, integrating robust encryption protocols, including
quantum-resistant cryptography, is essential. Additionally, Continuous Variable Quantum
Key Distribution (CVQKD) using mmW and THz frequencies, supported by cryogenic tech-
nology, offers a potential breakthrough for secure wireless communications and the future
quantum internet [8].

2.4.3 Challenges and Future Work

Photonics-assisted RoF technology is set to play a crucial role in 5G and beyond, offering
high-capacity, low-latency, and cost-effective network solutions. However, challenges remain
in optimizing remote components, improving mmW transmission, and refining optical modu-
lation techniques for widespread deployment. While mmW communications enhance cyberse-
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curity by reducing eavesdropping risks and enabling secure high-speed data transfer, they are
vulnerable to physical disruptions, require complex hardware, and demand high infrastruc-
ture investments. The future of secure RoF networks lies in integrating AI-driven security,
adaptive beamforming, and advanced encryption, ensuring stronger resilience against cyber
threats. Researchers are actively working to address vulnerabilities such as jamming, beam
tracking attacks, and device authentication risks by developing hybrid security models that
blend physical-layer defenses with cryptographic techniques, paving the way for robust, next-
generation wireless networks.
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2.5.1 Introduction

Every new generation of wireless mobile networks brings significant updates in terms of
communication technologies, speed of operation, network parameters, operating frequencies,
security, etc. The 7G (Seventh Generation) is the intelligent cellular technology that will
succeed the 5G and 6G, by upgrading to a much higher frequency range, a higher capacity
and a much lower delay in communication. 7G is expected to provide the capabilities of
non-existent delay in communication, very high-speed connectivity, utilization of Artificial
Intelligence based core networking solutions, virtual space environment with realistic sen-
sations, internet cognition, better global coverage by using a satellite network, internet of
everything, better remote access for diagnosis, learning, etc.

By introducing quantum technology, 7G will be able to speed up computing processes
and enable use of quantum computing based cryptography as well as to enable distributed
quantum computing, that is a new paradigm in computer sciences. With the advent of
quantum computers, Shor’s algorithm, a quantum algorithm that finds prime factors of an
integer, and quantum search algorithms have compromised the RSA and ECC schemes that
run on classical computers. This paved the way for research into post-quantum and quantum
cryptography algorithms for use in 7G networks.

This paper provides an overview of Quantum Secure Communications techniques, and
gives challenges and future directions for the potential areas of use in emerging wireless
networks and 7G.

2.5.2 State of the Art: Secure Quantum Communication Protocols

The growing threat of cyberattacks has highlighted the vulnerability of classical cryptographic
methods. In response to this challenge, quantum cryptography has emerged as a revolutionary
solution promising unbreakable encryption. This section focuses on the secure quantum
communication protocols.

Quantum Key Distribution

Quantum Key Distribution (QKD) enables two parties to produce and share a key via quan-
tum channel by relying on fundamental laws of quantum mechanics that protects the data,
such as, the no-cloning theorem makes impossible to create identical copies of a quantum
state, which prevents attackers from copying the data. Additionally, if an attacker listens to
the communications (i.e., measures the quantum states), the system will change in such a
way that both sender and receiver parties will know it. The follow-up communication of the
message encrypted with the key is still based on classical communications.

QKD Protocols are:

• BB84 (Charles H. Bennett, Gilles Brassard, 1984, HUP, DV)
• E91 (Artur Ekert, 1991, QE, DV)
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• B92 (Charles H. Bennett, 1992, HUP, DV)
• BBM92 (Charles H. Bennett , Gilles Brassard, N. David Mermin, 1992, QE)
• MSZ96 (Yi Mu, Jessica Seberry, Yuliang Zheng, 1996)
• Six-state (Dagmar Bruss, 1998)
• SSP (Bechmann, H. Pasquinucci, Nicolas Gisin, 1999 , HUP)
• Silberhorn (Christine Silberhorn, 2001, QE, CV)
• DPS (Differential-Phase-Shift, Kyo Inoue, Edo Waks, Yoshihisa Yamamoto, 2002, QE,

DV)
• GG02 (Frédéric Grosshans and Philippe Grangier, 2002, HUP, CV)
• Decoy state (HoiKwong Lo, Xiongfeng Ma, Kai Chen, 2003, HUP, DV)
• SARG04 (Valerio Scarani, Antonio Acin, Gregoire Ribordy, Nicolas Gisin, 2004 , HUP,

DV)
• COW (Coherent One-Way, D. Stucki, N. Brunner, Nicolas Gisin, Valerio Scarani, H.

Zbinden, 2005, QE, DV)
• KMB09 (Muhammad Mubashir Khan, Michael Murphy and Almut Beige, 2009 , HUP)
• S13 (Eduin Esteban Hernandez Serna, 2013 , HUP)
• HD-QKD (YunHong Ding, Davide Bacco, 2017)

where the principles are HUP: Heisenberg’s Uncertainty Principle and QE: Quantum Entan-
glement and where the types are CV: Continuous Variable and DV: Discrete Variable.

There is no single "best" QKD method. It depends on the application, performance
requirements, and infrastructure. However, here is the strengths of the most commonly used
QKD protocols:

• Most secure: Device-Independent QKD (DI-QKD)
• Best tradeoff between security and practicality: Measurement-Device-Independent QKD

(MDI-QKD)
• Most widely used and easy to implement: BB84 Protocol. It is also the best for

satellite-based QKD.
• Best for long distances: Twin-Field QKD (TF-QKD)
Quantum entanglement takes place when two or more particles interact in a manner such

that the state of one cannot be described without referencing the state of the other(s), no
matter the separating distance. This is to say that measuring one particle directly affects the
state of the other entangled particle(s). Heisenberg’s uncertainty principle asserts that it is
impossible to know simultaneously certain pairs of physical properties, such as position and
momentum, with unlimited precision. The more precisely one is known, the less precisely the
other may be known.

In DV-QKD, single photons are sent through the channel, one at a time. The informa-
tion can be encoded in the polarization of each photon. It is the best suited for long-haul
networks. In CV-QKD, continuous beam of light is sent, as in most classical optical commu-
nications. The information can be encoded by modulating the amplitude and phase of the
electromagnetic wave. It gives the highest performance in metro networks.

Quantum Secure Direct Communication

Quantum Secure Direct Communication (QSDC) provides direct and secure communications
between two parties via quantum channels based on quantum mechanics without using a
security key distribution [1].
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Quantum Identity Authentication

Quantum Identity Authentication (QIA) guarantees that the recipient gets the qubits from
the right sender, and the sender guarantees that the output of the quantum channel is read
by the authentic receiver [2]. In QIA, Alice is an authenticator, Bob1, Bob2, · · · , Bobr are
the certified users. Trent, which is the third party, helps Alice to simultaneously authenticate
Bob1, Bob2, · · · , Bobr. The steps are as follows:

1. Trent sends secret keys to Alice and Bobs at the time of registration. Alice transmits
qubits to the Bob1, Bob2, · · ·, Bobr individually during preparation.

2. Bob1, Bob2, · · ·, Bobr send the measured and operated particles to Alice, respec-
tively.

3. Alice reports her computation results to Trent.
4. Trent compares results to see if the authentication is successful or not, and announces

it to all users at the same time.

Quantum Secret Sharing

Secret Sharing shares a secret key among several users in a way that they are all given a share
of the secret key without any one of them individually being able to figure out the whole
secret key. The secret key can only be reconstructed upon cooperation of the nodes. Such
as,

Alice’s Key + Bob’s Part = Charlie’s Part
Quantum Secret Sharing (QSS) enables splitting and sharing the secret key among mul-

tiple nodes on quantum states instead of classical bits.
QSS Schemes are [3]:

• QSS sharing classical information
• QSS sharing quantum state
• QSS based on the single particle
• QSS based on the maximal entangled states
• QSS based on the non-maximal entangled states
• QSS realizing the (n-n) structure (data is divided into n pieces and easily reconstructed

from these n pieces)
• QSS realizing the (t-n) structure (data is divided into n pieces in such a way that data

is easily reconstructable from any t pieces; namely, any t out of n participants can
recover the secret)

• QSS realizing the general access structure
• QSS demonstrating the verifiable QSS
• QSS demonstrating the dynamic QSS
• QSS demonstrating the error-correcting QSS

In QSS sharing quantum state, Alice, Bob, and Charlie all possess one particle of a GHZ
triplet. They all randomly decide to measure their particle in the x or y direction. The steps
as the following [4]:

1. Alice combines her qubit with her GHZ particle, and measures the pair in the Bell
basis. She does not tell the result to Bob and Charlie.

2. Alice tells Bob and Charlie to measure their GHZ particles. For instance Bob measures,
then tells the result to Charlie.
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3. Alice sends her measurement result to Charlie. So, Charlie learns the amplitude of
Alice’s qubits, but knows nothing about its phase.

4. Bob’s qubit gives Charlie the phase information, and allows him to reconstruct Alice’s
qubit.

Bob not only has to measure his particle but also transmit the outcome to Charlie so that
Charlie can reconstruct Alice’s state with the help of Bob.

Other Quantum Security Topics

• Quantum Permutation Pad (a quantum-safe symmetric cryptographic algorithm [5])
• Quantum Consensus (reaching agreement in quantum networks) [6]
• Quantum Coin Flipping (a protocol based on quantum mechanics to be used between

two or more parties who do not trust each other) [7]

2.5.3 Challenges and Future Work

The quantum computers will enable work on optimization of emerging large-scale networks
and potential solutions for enhancing energy and decision latency efficiency in 7G. Quan-
tum computers also offer the advantages quantum information processing when it comes to
feasible practical implementation in a variety of applications in 7G like, resource availability
prediction, optimum network resource allocation, traffic monitoring, network control, network
design, deployment and operation. Space roaming with the support of QKD over quantum
satellite network will provide high datarate and enhanced security.

Since the network optimization issue is complex, quantum computing provides the ulti-
mate solution in order to be capable of dealing with the network dynamics. The optimization
issues are combinatorial in nature and would be significantly helped by the application of
quantum algorithms. Beyond the gigantic speed up in computation from the parallelism in
the operation (Google has reported a quantum computer capable of computing 108 times
faster than the classical one).

The primary restriction on the application of quantum computing technology in future
networks is the requirement to utilize centralized instead of distributed information processing
rendering the effects of propagation delays. With the development of distributed quantum
computing, these restrictions can be alleviated to a certain degree.
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This section lays the groundwork for building trustworthy and high-assurance wireless
systems in the 6G era. As 6G networks evolve toward increasingly intelligent, complex, and
large-scale, the demand for trustworthiness will intensify. Therefore, it is vital to explore
how trust assessment frameworks, architectural design principles, and regulatory compliance
shape performance and reliability in next-generation networks. This section aims to con-
tribute to this goal by examining methodologies for assessing, measuring, and enhancing
trustworthiness and its key characteristics, such as resilience and robustness, while also ex-
ploring the role of legal compliance in enabling privacy-preserving, secure, and resilient 6G
connectivity. Furthermore, it extends the discussion of trust and integrity beyond the net-
work infrastructure, addressing multi-vendor supply chain risks and the evolving regulatory
landscape in Europe.

For 6G to be a trustworthy network, it will need to move beyond static trust assumptions
and implement continuous, real-time trustworthiness assessment and adaptation, grounded in
dynamic trust models with zero-trust principles, which requires a new architectural paradigm.
Trust also needs to be calculated, propagated, and managed across all network layers, using
context-aware metrics and decision processes that consider both observable behavior and
broader security policies. Since 6G will be an AI-native network, ensuring the trustworthiness
of AI itself becomes crucial, requiring transparency, explainability, and robustness against
manipulation to uphold overall network trustworthiness. Resilience and robustness are among
the main characteristics defined in a trustworthy network. 6G networks must demonstrate
the ability to withstand, adapt to, and recover from failures, whether accidental, systemic,
or adversarial. As critical infrastructure becomes increasingly interdependent, identifying
and protecting vital nodes and links will be essential to maintain operational continuity and
public trust.

Besides trust assessment and resilience measurement, enhancing trustworthiness in 6G
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requires active and continuous management through network management tasks. Integrating
trust-aware mechanisms into network management tasks such as scheduling, resource alloca-
tion, and routing enables the network to dynamically adapt security, reliability, and privacy
levels while maintaining network key performance indicators (KPIs). This approach ensures
a balanced, robust, and trustworthy 6G system that responds effectively to changing network
conditions and user demands.

On the other hand, a dedication to Privacy by Design (PbD) principles is necessary to
ensure and maintain trust in 6G networks, which are characterized by massive data flow
and AI-driven services. Putting PbD principles into practice could help maintain and ensure
trust. By directly integrating privacy protections into system architectures, PbD principles
proactively reduce such risks. However, effective implementation depends on harmonizing
fragmented regulatory compliance.

Finally, trust is not confined to the infrastructure, but also extends beyond it to the
multi-vendor supply chain ecosystem. Consider supply chain security as an example: since
6G networks will be heterogeneous and built from components sourced globally across mul-
tiple vendors, the vulnerability of all network elements (including software, hardware, and
third-party services) will increase. To address these risks, end-to-end visibility, robust risk
management, and compliance with emerging regulatory frameworks such as the Cyber Re-
silience Act (CRA) and the EU’s NIS2 Directive are essential.

Together, these insights form the foundation of a trustworthy, adaptive, and regulation-
aware 6G architecture.
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3.2.1 Introduction

As the sixth-generation technology for wireless communication (6G) networks changes the
modern communications concept, their trustworthiness becomes essential. Indeed, 6G brings
together intelligent, heterogeneous networks and breaks the boundaries between the physical
and digital worlds. In the 6G ecosystem, when billions of interconnected devices interact
with new human-machine interfaces, taking into account the multi-vendor supply chain and
the use of various software types, any security breach can have real-world consequences [1].
In addition, using artificial intelligence (AI) in 6G creates new vulnerabilities, making trust-
worthy AI essential to ensure secure and sustainable operations. 6G trustworthiness should
become a fundamental layer of network architecture, ensuring reliability, security, privacy,
and availability to address these issues. Built on trust, intelligence, and heterogeneity, 6G
requires a paradigm shift in trustworthiness, which requires innovative solutions such as in-
telligent trustworthiness management, blockchain for secure transactions, AI-based security
protocols, and strong authentication mechanisms. The successful development of trustwor-
thy 6G depends on bridging research gaps, designing adaptive trustworthiness architectures
and models, and establishing standardized trustworthiness metrics, assessment methods, and
frameworks to ensure its integrity and performance.

However, current approaches to trustworthiness remain fragmented as they combine ele-
ments of security, cyber resilience, and trust management of network systems. The lack of
unified approaches and clear definitions of trust, trustworthiness, security, and resilience cre-
ates methodological and practical challenges to build a trustworthy 6G network. Therefore, a
systematic analysis of existing disciplines, their comparison and the development of common
trustworthiness metrics are necessary to create transparent and effective trust mechanisms
in the 6G architecture.

Trustworthiness is usually defined as the degree to which the entity can meet critical
requirements or perform according to the designed behavior under any set of conditions [2].
From the communication system point of view, trustworthiness is described by its charac-
teristics, including, but not limited to, reliability, security, robustness, resilience, availability,
integrity, safety, privacy, confidentiality, and also, benevolence, functional or non-functional
capacities, and intervenability [3].

On the other hand, trust is often understood as the extent to which one entity is willing to
depend on another in a given situation [4]. While it is typically derived from trustworthiness,
the derivation may include other factors, even subjective ones such as the utility of the
interaction in question or the entity’s risk tolerance.

To build up a trustworthy 6G network, we need a multi-layer hierarchical trustworthiness
architecture (see Figure 3.1). At the innermost layer of this architecture is the user equip-
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Figure 3.1: Conceptual Framework for Multi-layer Hierarchical Trustworthiness Architecture.

ment, which comprises different mechanisms to ensure data trustworthiness in the physical
devices and measure the degree of trustworthiness of end users’ devices. At the inner layer
of the hierarchy is the infrastructure, which ensures trustworthiness at the architectural level
and communication protocols and links. The outermost layer provides fundamental trust and
originates from three aspects: trusted foundation, trusted platform, and trusted hardware,
ensuring the technologies involved in 6G are inherently designed to be trustworthy in order to
preserve network trustworthiness [5]. The zero trust architecture is one promising approach
that can be deployed in this hierarchy model, where trustworthiness assessment and compu-
tation continuously and dynamically evaluate users and devices. The rationale behind this
approach is that users’ behavior is not static but changes over time, influenced by various
factors, such as network conditions and communication links, user activities and movement,
and application usage [6].

A trustworthiness model must be developed at each layer of the above-described archi-
tecture with three main building blocks: trustworthiness computation, propagation, and
management. A trustworthiness computation component makes an assessment based on pre-
defined metrics, and it usually consists of techniques that aggregate observations to obtain
a single trustworthiness score [7]. Trustworthiness propagation handles the dissemination of
trustworthiness-related information of the involved entities in the network in a distributed,
semi-distributed, or centralized fashion [8]. Finally, trustworthiness management is the core
of the model, wherein the final decision on whether a user, communication link, node, or
component is trusted or not is made, and measures and countermeasures for enhancing the
overall network trustworthiness are optimized. While the decision to trust or not can be as
simple as thresholding the trustworthiness, it is often more involved in incorporating con-
textual information, security policies, as well as subjective factors such as risk tolerance.
Figure 3.1 shows a conceptual framework for the hierarchy architecture with its interactions
with trustworthiness main building blocks.

3.2.2 State of the Art

6G Trustworthiness Metrics

Considering 6G networks’ vulnerabilities and requirements, the challenge arises in identifying
appropriate metrics to evaluate 6G network trustworthiness. One relevant approach is to es-
tablish appropriate metrics, which first requires defining potential threats and vulnerabilities
affecting different 6G network components, including nodes (base stations, user devices, core
network elements), links (wireless and wired transmission paths), and the entire system (net-
work applications, AI-driven optimizations, API vulnerabilities, software risks, and protocol
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weaknesses). Once these threats are identified, the corresponding quantitative and qualitative
metrics can be formulated to assess security, resilience, and overall 6G trustworthiness [9, 10].

Furthermore, metrics need to be categorized. These metrics can be primitive metrics
obtained from raw data measurements or numerous variants of derived metrics based on pos-
sible aggregation functions related to key aspects of network trustworthiness (e.g., security,
resilience, trust). At the same time, the modeling and analysis-based measurements stage
is essential when proposing derived metrics. These measurements aim to quantify the per-
formance attributes of the system or its components and explore the application of various
analytical methods, simulation, and emulation tools.

Given the introduction of native AI, which characterizes 6G networks, identifying appro-
priate AI trustworthiness metrics is also essential. Moreover, it should be taken into account
that according to the European Commission’s Ethics guidelines, trustworthy AI should be
lawful in respect of regulations, ethical in principles and values, and robust technically and
socially. Among the trustworthiness metrics that can be evaluated for AI-based systems for
6G, we can highlight the following [11]. In data quality assessment, the metrics can be dis-
tinguished regarding data completeness, correctness, diversity, and representativeness. The
AI operability metrics must prove a safe and reliable system function. While AI dependabil-
ity metrics ensure critical AI systems deliver justifiably trusted service and meet functional
safety requirements. Robustness metrics assessment and monitoring are also mandatory due
to the demands for proper system functioning in adverse conditions and avoiding safety and
security risks. Besides, the specific AI systems’ explainability metrics aim to provide an inter-
face between humans and AI. Finally, human-centered quality and human oversight metrics
are connected with privacy and respect for fundamental human rights.

6G Trustworthiness Assessment Methods

Trustworthiness can be assessed in multiple ways. Here, we classify assessment methods
along three dimensions: static or dynamic, local or global, and ad-hoc or by design. The first
dimension distinguishes between static assessments, which are performed once and remain
unchanged, and dynamic assessments, which are updated continuously [5]. For instance,
computer hardware, which rarely changes during operation, can be evaluated statically. A
suitable method for such an evaluation is the Common Criteria for Information Technology
Security Evaluation, an international standard that assesses the reliability of a device based
primarily on its security functions. In contrast, the trustworthiness of users, devices, and
applications varies over time, requiring continuous evaluation. Trust models address this
need by collecting behavioral data and estimating trustworthiness through data aggrega-
tion, heuristic-based computations, machine-learning algorithms, or sophisticated reasoning
techniques [15].

Another key distinction in trustworthiness assessment concerns the data’s origin, which
can be local or global. Local assessments rely solely on data collected by a specific appli-
cation or component, whereas global assessments incorporate data from multiple sources.
For example, a base station that evaluates connected devices using only locally gathered
data performs a local assessment. If the assessment were global, the base station would also
consider data from other base stations. While this broader approach generally improves ac-
curacy, it introduces new vulnerabilities: a base station must trust the reliability of other
base stations, as incorrect or malicious data could corrupt the assessment. Calculating a
device’s global trustworthiness aligns with reputation models, which are designed to address
such challenges [10, 8].

A third approach to trustworthiness assessment, advocated in [16], follows the principle of
trustworthiness-by-design. This principle asserts that trustworthiness should be an integral
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Table 3.1: Recent trustworthiness assessment frameworks overview

[12] [13] [9] [10] [2] [14]
Characteristics1 Com, Use, Fnc,

Rob, Neu, Exp
Rel, Sec,
Res, Saf,
Prv

Rel, Sec, Res,
Saf, Prv

Sec Rel, Avl, Saf, Cnf,
Int, Rob, Mnt,
Adp, Use, Tim,
Eff, Rct, Pro

Sec, Prv, Res

Metrics2 ✗ ✗ physical layer pa-
rameters

✗ ✗ ✗

Assessment level trustworthiness
model

4-layer3 node, link, sys-
tem

4-
layer

4-layer network ele-
ments, parties
in supply
chain, orga-
nization in
industry

Computation method4 ✗ ✗ dynamic, local,
reasoning

✗ ✗ ✗

Grading5 binary, coarse-
grained, fine-
grained, semantic

coarse-
grained,
fine-grained

binary, fine-
grained

✗ coarse-grained ✗

AI-trustworthiness ✓ ✗ ✗ ✓ ✗ ✓

Propagation ✗ ✗ ✗ ✓ ✗ ✓

Application telecommunication
networks

IoT IoT (localiza-
tion)

6G 6G 6G

✗ not included, ✓ included.
1 Comprehensiveness (Com), Usability (Use), Functionality (Fnc), Robustness (Rob), Neutrality (Neu), Explicability (Exp),

Reliability (Rel), Security (Sec), Resilience (Res), Safety (Saf), Privacy (Prv), Availability (Avl), Confidentiality (Cnf),
Integrity (Int), Maintainability (Mnt), Adaptability (Adp), Timeliness (Tim), Efficiency (Eff), Reactiveness (Rct), Proac-
tiveness (Pro).

2 Except [15], the other works do not specify any particular metrics.
3 The 4-layer protocols in TCP/IP.
4 Except [15], the other works primarily present generic frameworks and do not specify any particular assessment method.
5 The binary-level approach provides a binary evaluation for each metric. The coarse-grained approach evaluates using

discrete quality levels. The fine-grained approach assigns continuous quality scores for trust assessment.

part of a system’s development from the outset, rather than an ad-hoc addition. The authors
decompose trustworthiness into six key pillars—security, resilience, privacy, ethics, robust-
ness, and reliability—each evaluated using specific mechanisms and metrics. This struc-
tured framework allows the evaluation of trustworthiness with a well-defined rubric while
also enabling designers to systematically incorporate and optimize trustworthiness early in
the development process.

6G Trustworthiness Assessment Frameworks

In addition to the existing trustworthiness evaluation methods for 6G networks discussed
in the literature, several ongoing research efforts aim to develop generic frameworks. 3.1
compares recent frameworks proposed for 6G communications and Internet of Things (IoT)
applications. The table indicates that no comprehensive framework currently addresses all
technical and non-technical aspects of a trustworthiness assessment workflow for 6G while
providing practical implementation guidance and requirements, thereby highlighting future
research opportunities.

3.2.3 Challenges and Future Work

Integrating Software-Defined Networking (SDN) in 6G enhances global network trustwor-
thiness by enabling centralized control and visibility, programmability, and automated se-
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curity orchestration across the core network and Software-Defined Radio Access Networks
(SD-RAN). However, 6G introduces new security challenges, including heterogeneous en-
vironments, an expanded attack surface, and AI-powered threats, necessitating intelligent
and adaptive security measures. Emerging solutions such as secure network slicing, dis-
tributed security services under fog-edge-cloud continuum, blockchain-based security, and
AI-driven security operations collectively contribute to a more secure and trustworthy 6G
network [17, 18]. However, defining and assessing trustworthiness metrics is quite complex in
SDN-enabled 6G networks because it requires consideration at all architectural levels. Mean-
while, specialized network monitoring and management software will allow one to accumulate
relevant network data and generate appropriate derived metrics.

At the same time, virtual or digital twins are essential for classifying and analyzing trust-
worthiness metrics in 6G networks [19]. Real-time simulation and modeling of the network
with this technology enable testing various threats and their impacts on security, resilience,
and trust while refining and verifying trustworthiness metrics. This approach leads to a more
accurate metrics assessment and better-informed decision-making in the development and
operation of 6G.

In addition, physical layer security (PHY-Sec) is emerging as a key enabler for 6G trust-
worthiness, leveraging new physical characteristics such as millimeter waves, higher band-
width, and massive antenna arrays to enhance communication security. The rapid variation
in multipath fading and spatial-temporal correlation in 6G channels offers new opportunities
for secure key generation and authentication. However, challenges remain in designing robust
PHY-Sec techniques that can adapt to dynamic environments and ensure resilience against
evolving eavesdropping and spoofing attacks.

Moreover, key enablers such as federated learning, homomorphic encryption, and edge val-
idation for data integrity hold great promise for enhancing privacy in 6G networks. Federated
learning assures privacy preservation with decentralized training of machine learning mod-
els, while homomorphic encryption enables computations on encrypted data, allowing secure
processing of sensitive information and maintaining privacy preservation. Additionally, with
the growing number of human-attached sensors in 6G, an automated edge-based validation
system is crucial to ensure data integrity of sensors before sharing with applications [1].

However, the mentioned technologies are still in their early research stages and demand
further development to meet the requirements of scalability, interoperability, and consistency.
Subsequent real-world deployment must consider the complex 6G network trustworthiness
challenges. Therefore, future research efforts should focus on developing adaptive trust-
worthiness architectures and comprehensive assessment frameworks for 6G unified metrics
to ensure the seamless integration of these cutting-edge technologies into a trustworthy 6G
ecosystem.
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3.3.1 Introduction

In an increasingly interconnected world, network resilience has become a critical research area.
Network resilience encompasses a system’s capacity to withstand, recover from, and adapt
to failures, whether they arise from accidental malfunctions, natural disasters, or targeted
cyber-physical attacks. The importance of robust network resilience strategies has grown as
emerging threats, including sophisticated cyberattacks and large-scale system failures, present
unprecedented challenges to infrastructure stability.

In this White Paper, we delve into the critical issue of network robustness. Our focus
is on identifying the most crucial links within a network (e.g., wireless telecommunication
infrastructures), those whose removal or failure could cause significant disruption. While net-
works are inherently vulnerable to random failures, they are increasingly at risk from targeted
cyber-physical attacks, making it imperative to understand which nodes and links are most
vital for maintaining network integrity. The core challenge in enhancing network resilience lies
in distinguishing between critical components, whose loss severely impacts functionality, and
non-critical elements, which can be removed with minimal effect. Network robustness, at its
core, refers to a system’s ability to withstand disruptions-whether intentional or accidental-
while continuing to operate effectively.

This White Paper provides an overview of network robustness and its role in protecting
critical infrastructure systems. We explore the current state-of-the-art, discuss key chal-
lenges in network vulnerability assessment, current limitations, and provide future research
directions.

3.3.2 State of the Art

Robustness Enhancement via Link Perturbations Improving network robustness of-
ten involves topological perturbations, which modify the structure of a network over time
(Van Mieghem, 2011). These modifications can take various forms, including the addition or
removal of nodes, the introduction or deletion of links, the rewiring of existing connections by
changing one of their endpoints, and the adjustment of node and link weights. Targeted per-
turbations can strengthen or maintain network resilience. Wang et al. (2014) demonstrated
both experimentally and theoretically that robustness can be improved by adding links that
minimize effective graph resistance, as well as by identifying and protecting links whose re-
moval would significantly increase this resistance. Various strategies have been explored for
different network types. In single-layer networks, techniques such as low-degree link addition
and random link addition have been proposed to enhance robustness. For interdependent net-
works, researchers have investigated more advanced strategies, including random inter-degree
difference and low inter-degree difference approaches. These methods, along with their exten-
sions, such as low-degree IDD, low-degree-product IDD, and low-degree-sum IDD, have been
found to be effective in improving network resilience (Kazawa & Tsugawa, 2020). Several
studies have focused on different techniques for perturbation-based robustness enhancement.
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Schneider et al. (2011) proposed an iterative rewiring method in which pairs of links are
randomly selected and swapped only if the modification improves robustness, ensuring that
the overall number of connections remains unchanged. In another approach, Buesser et al.
(2011) applied a simulated annealing optimization technique to rewire scale-free networks
while preserving the degree distribution, aiming to mitigate the effects of targeted attacks
on hub nodes. Carchiolo et al. (2019) adopted a different perspective by enhancing ro-
bustness through the addition of a small number of new connections. Unlike most previous
approaches, which focus on reinforcing hub nodes, their method establishes long-range backup
links between secondary nodes to safeguard network connectivity in the event of hub failures.
Furthermore, Louzada et al. (2013) introduced a budget-constrained rewiring strategy based
on monitoring the evolution of the network’s largest component during targeted attacks.
Unlike random rewiring approaches such as those proposed by Schneider et al. (2011), this
method guides the formation of a modular onion-like structure, which enhances resilience by
organizing nodes into layers based on their degree.

Evolutionary Approaches for Network Robustness In addition to perturbation-based
methods, researchers have explored optimization techniques inspired by evolutionary prin-
ciples to enhance network robustness. Evolutionary computation, a class of optimization
techniques that mimic biological evolution (Bäck et al., 1997), has been successfully applied
to solve complex real-world optimization problems, including network robustness optimiza-
tion. These methods initialize a population of potential solutions and iteratively refine them
using genetic operators such as mutation, crossover, and selection. By continuously explor-
ing the solution space, evolutionary algorithms can efficiently identify network configurations
that improve resilience. Several studies have leveraged evolutionary computation for network
robustness optimization. Zhou and Liu (2014) developed a memetic algorithm designed to
enhance the robustness of scale-free networks by optimizing the R-value (Herrmann et al.,
2011). Their approach focuses on protecting network hubs through targeted rewiring while
preserving the overall degree distribution. Similarly, Wang and Liu (2017) proposed a new
robustness measure, Rce, which extends the R-value to account for cascading failures. They
introduced an evolutionary algorithm, MA-Rce, that integrates genetic operators with a local
search mechanism based on simulated annealing, similar to the technique used by Buesser
et al. (2011). Building on these approaches, Pizzuti and Socievole (2018, 2019, 2023) devel-
oped a series of genetic algorithms for network robustness enhancement. Their first method,
RobGA, improves robustness by adding a link that minimizes effective graph resistance. In
subsequent work, they introduced RobLPGA, which focuses on protecting network links by
identifying and safeguarding those whose removal would most significantly increase

More recently, they addressed the computational challenges associated with robustness
optimization by proposing an accelerated version of RobGA. This method leverages an ap-
proximation based on the incremental computation of the Moore–Penrose pseudoinverse of
the Laplacian matrix, significantly reducing computational complexity while maintaining high
accuracy in effective graph resistance calculations.

Enhancing network robustness requires strategic modifications to topology, either through
targeted perturbations or optimization techniques. While link perturbations offer immediate,
practical improvements, evolutionary methods provide a more adaptive and scalable approach
for optimizing network resilience. Future research may further refine these techniques, in-
tegrating machine learning and real-time adaptability for enhanced robustness in dynamic
networks.
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Machine Learning-Based Approaches for Robustness Optimization.

Machine learning (ML) has emerged as a powerful tool for optimizing network robustness
by enabling predictive modeling, adaptive decision-making, and intelligent link modifica-
tions. Unlike traditional heuristic-based techniques, ML approaches can learn from historical
network data, detect patterns of vulnerabilities, and recommend optimal interventions dy-
namically. This capability is particularly advantageous in large-scale and evolving networks,
where robustness requirements change over time.

Graph Neural Networks (GNNs) for Robustness Prediction GNNs have gained
popularity as an effective ML framework for analyzing network structures [1]. Unlike tra-
ditional neural networks, GNNs can directly process graph data, making them well-suited
for predicting network vulnerabilities and identifying optimal link modifications to enhance
robustness. By encoding the relationships between nodes and learning hierarchical features
from the network topology, GNNs can predict which structural modifications will most effec-
tively improve resilience. Several studies have demonstrated the potential of GNNs in network
robustness optimization. In [1] GNN models have been used to analyze network vulnerabil-
ity patterns and predict the best reinforcement strategies against targeted attacks. Their
work showed that deep learning models could outperform traditional heuristics by adapting
to complex network structures and providing data-driven recommendations for improving
robustness.

Reinforcement Learning (RL) for Adaptive Robustness Optimization RL provides
another promising avenue for robustness enhancement by modeling network optimization
as a sequential decision-making process. Unlike static optimization techniques, RL allows
an intelligent agent to interact with the network, learn from its responses, and iteratively
refine its strategy for maximizing robustness. This approach is particularly beneficial for
dynamic networks, where the topology evolves over time due to external factors such as
traffic fluctuations, environmental changes, or cyberattacks. Recent studies have explored
the application of RL in network resilience. In [2] is proposed an RL-based framework for
enhancing the robustness of interdependent networks by optimizing link allocation. Their
approach allowed the network to adaptively reinforce its structure in response to observed
failures, improving resilience against cascading disruptions.

Anomaly Detection for Network Resilience Another important ML application in
network robustness is anomaly detection, which involves identifying unusual patterns that
may indicate structural weaknesses or impending failures. By analyzing historical network
performance data, ML classifiers can detect deviations from normal behavior and trigger
proactive interventions to reinforce network resilience.

Link Perturbation Methods for Robustness Enhancement

Enhancing the robustness of networks is often achieved by introducing perturbations to their
topology. A perturbation represents an event that alters the network structure over time,
consisting of a sequence of fundamental modifications. These fundamental changes, occur-
ring at specific time intervals, influence the underlying graph representation of the network,
affecting matrices such as the adjacency matrix or the Laplacian matrix [5]. The modifica-
tions can take various forms, including the addition or removal of nodes, the introduction
or elimination of links, the reassignment of link endpoints (rewiring), and changes in either
node or link weights.
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By carefully designing these perturbations, network robustness can be actively preserved
or even improved. For instance, when considering link perturbations in relation to the concept
of effective graph resistance as a robustness indicator, Wang et al. [5] provide both theoretical
and empirical evidence that two key strategies enhance network resilience: (i) strategically
adding links that minimize effective graph resistance and (ii) identifying and safeguarding
critical links whose removal would significantly increase this resistance. Their study as-
sesses four different link selection strategies across a variety of real and synthetic networks,
quantifying the impact of these structural changes on overall robustness. In cases where net-
works are subjected to degree-based targeted attacks, the addition of specific links has been
demonstrated to be a viable defense strategy, particularly in interdependent and multilayered
networks. Kazawa and Tsugawa [6] analyze the effectiveness of multiple link-addition strate-
gies, distinguishing between methods for single-layer networks (such as low-degree (LD) and
random addition (RA)) and those tailored for interdependent networks.

Beyond link additions, network rewiring has also emerged as a powerful tool for increas-
ing robustness. Schneider et al. [7] propose an iterative rewiring process where random link
pairs are selected, and swaps are performed only if they result in an improvement in network
resilience. This method ensures enhanced robustness without altering the total number of
connections. Similarly, in the context of scale-free network design, a structural configuration
resembling an "onion-like" topology has been suggested, in which high-degree nodes are cen-
trally located while nodes with progressively lower degrees form the outer layers, enhancing
overall resilience. Instead of reinforcing highly connected nodes, some studies explore alter-
native strategies for enhancing network robustness. Carchiolo et al. [8] propose introducing
a small number of additional links to scale-free networks, deliberately connecting nodes that
play a secondary role rather than targeting hubs. This approach aims to establish long-range
alternative paths, acting as backup connections in the event of failures in central nodes.
Unlike traditional strategies that reinforce the most influential components of a network,
this method fosters resilience by ensuring the existence of redundant pathways even in the
periphery of the system.

Percolation theory provides a theoretical framework for studying how networks maintain
connectivity under progressive failures [4]. By analyzing the behavior of networks as nodes or
links are removed, percolation-based methods offer valuable insights into structural resilience
and provide strategies for reinforcing weak components. Bootstrap percolation is a proba-
bilistic model in which nodes fail if they do not have a sufficient number of active neighbors.
This cascading process helps identify regions of the network that are particularly vulnerable
to fragmentation, allowing targeted reinforcement strategies to be applied. Strengthening
these weakly connected regions can significantly enhance overall robustness.

Cascading Failure Mitigation Strategies

Cascading failures represent one of the most severe threats to network robustness, partic-
ularly in interdependent and multilayer networks [9]. A small initial failure can propagate
throughout the system, leading to large-scale disruptions. Developing strategies to mitigate
cascading failures is essential for maintaining the stability of critical infrastructure networks.
One effective approach for mitigating cascading failures is to dynamically redistribute load
across the network to prevent overload conditions.

Interdependent networks, such as power grids and communication systems, require strate-
gies to dynamically adjust their coupling strength to prevent systemic collapse. When depen-
dencies between networks are too rigid, failures in one system can rapidly propagate to the
other. Adaptive coupling techniques aim to regulate these dependencies to enhance resilience.

Another important strategy for mitigating cascading failures is the containment of failing
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network regions. By isolating affected nodes or subnetworks, further disruptions can be
prevented.

3.3.3 Challenges and Future Work

While significant progress has been made in enhancing network robustness, several chal-
lenges remain. These challenges stem from computational complexity, real-world applica-
bility, adaptability to dynamic environments, and trade-offs between robustness and other
network properties. Addressing these issues will pave the way for more effective and scalable
robustness enhancement strategies.

Many robustness optimization problems, including identifying the most critical links to
add or protect, are computationally intractable due to their combinatorial nature. New
optimization techniques leveraging graph sparsification, distributed computing, or quantum
computing could help improve computational efficiency in large-scale networks.

Many networks are not isolated but interdependent, meaning failures in one network
can trigger cascading failures in another. Future studies should investigate how robustness
measures and optimization techniques can be extended to multilayer and interconnected
networks, where dependencies between layers introduce additional vulnerabilities. Future
research in this area could explore hybrid approaches that combine bootstrap percolation with
ML-based predictive models to develop more adaptive robustness enhancement strategies.

By addressing these challenges and research gaps, future work can develop more efficient,
adaptive, and practical robustness optimization strategies, making networks more resilient
against failures and adversarial disruptions.
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3.4.1 Introduction

The sixth generation (6G) of mobile networks is envisioned to deliver groundbreaking services
while generating massive amounts of data and utilizing vast network resources, increasingly
depending on trustworthy network operations. A trustworthy 6G network must consistently
perform as expected, incorporating key characteristics such as reliability, security, resilience,
privacy, and safety. Reliability in 6G refers to the network’s ability to consistently deliver
data packets with minimal errors, latency, or faults under diverse conditions. Security ensures
that communication links remain protected from eavesdropping and tampering, safeguarding
data integrity and confidentiality. Resilience focuses on maintaining network availability
despite potential threats, requiring robust mitigation and recovery mechanisms. Privacy
emphasizes that users must retain control over their personal and location data, ensuring not
only anonymity and confidentiality but also integrity, availability, and compliance with the
principle of minimality. Finally, safety is the ability of the network to ensure that mobile
network operations do not lead to direct/indirect catastrophic impacts on human life, health,
property, data, or the surrounding physical environment [1].

A trustworthy 6G network requires both the evaluation/assessment and enhancement of
trustworthiness, considering the aforementioned characteristics. This necessitates continuous
assessment and active management throughout network operation. While trustworthiness re-
quirements are factored into the design phase of mobile networks, the overall trustworthiness
of a 6G system largely depends on operator-driven deployment optimization, implementa-
tion, and configuration. In the 6G era, networks should leverage zero-trust principles [2]
and incorporate a dynamic trust model, enabling real-time trustworthiness assessment and
adaptation. This requires continuous verifying and tracking users’ legitimacy and behavior,
and monitoring network links, as well as ongoing analysis of network subsystems’ behavior,
conditions, and requirements. Based on this evaluation, the trust level of users or communi-
cation links can be dynamically adjusted, upgraded or downgraded, when accessing network
resources. Additionally, as 6G networks become more flexible and scalable, trustworthiness
mechanisms must be fine-grained and dynamically adaptable to evolving network conditions,
user demands, and business requirements.

Recently, the question has arisen as to whether a dedicated trustworthiness management
layer should be incorporated into 6G network operations. Such a layer would be responsi-
ble for ensuring and enhancing trustworthiness across key network management components,
including the radio access network (RAN) and Core network, by optimizing tasks such as
scheduling, resource allocation and slicing, and routing [3]. A trustworthiness-aware network
management layer must strike a balance between trustworthiness metrics and traditional
network key performance indicators (KPIs). Achieving this requires an adaptive network ar-
chitecture capable of dynamic decision-making in network management tasks. For instance, it
must determine when and where to apply security measures, such as encryption or physical-
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(a) (b)

Figure 3.2: (a) Conceptual model for trustworthiness-aware network management. (b) Radar
chart comparing traditional KPI-based network management performance (blue line) vs. that
of the trustworthiness-enhanced network management (red line).

layer security (PHYSec), and how to distribute resources (e.g., power and bandwidth) to
maintain trustworthiness in terms of security, reliability, and privacy, while simultaneously
optimizing KPIs such as data rate, throughput, and delay. Figure 3.2 illustrates a concep-
tual model for integrating trustworthiness into network management, demonstrating how it
potentially can enhance trustworthiness while balancing traditional network KPIs. Although
the integration of trustworthiness management into network operations is still an evolving
concept in 6G networks, several existing methods in the literature have explored enhancing
specific trustworthiness characteristics through network management tasks, such as resource
allocation, routing, task offloading, and scheduling, as discussed in the following section.

3.4.2 State of the Art

Security considerations play a critical role in resource allocation decisions, as improper allo-
cation can compromise the network’s ability to prevent, detect, and mitigate security threats.
Security has been even accounted as one of the KPIs for network-aware resource management
in 6G [4]. Security can be integrated into resource allocation either as an optimization objec-
tive or as a constraint to ensure a network’s resilience against attacks and failures. Insufficient
computational power may prevent the execution of necessary encryption and decryption tasks,
exposing the network to eavesdropping and data breaches. Similarly, inadequate bandwidth
may limit the network’s capacity to detect and mitigate distributed denial of service (DDoS)
or side-channel attacks, leading to service disruptions. Moreover, in distributed systems,
resource allocation strategies must ensure there is no single point of failure, enabling the net-
work to maintain service continuity through redundancy and failover mechanisms [5]. In [6],
the problem of security-aware resource allocation is addressed by proposing a side channel-
aware resource allocation algorithm for ultra-reliable low-latency communication (URLLC)
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and enhanced mobile broadband (eMBB) slices in 5G RAN. With the constraint of avoiding
side-channel attacks, the objective is to maximize the number of slices accommodated in 5G
RAN by optimizing resource allocation for slices.

On the other hand, in wireless communication scenarios where direct communication is
not possible for all nodes, network trustworthiness might be compromised, as making reliable
data transmission and timely response to critical events is challenging. Addressing this issue
requires innovative strategies that optimize routing paths while considering trustworthiness
characteristics such as reliability and security. A learning-based secure routing algorithm
is proposed in [7] to enhance security in edge networks under dynamic DoS attacks. The
approach predicts attack patterns by analyzing both historical and real-time data, enabling
the selection of secure routing paths that minimize the risk of interception and maximize the
probability of successful data transmission.

Additionally, task offloading is one of the network management tasks in 6G vehicular
services, where vehicles rely on edge access points (e.g., roadside units) for computational
tasks. However, the zero-trust paradigm requires dynamic and secure task allocation. To
mitigate risks from malicious edge nodes, reputation-based offloading strategies have been
explored in [8] to assess the reputation of edge nodes, ensuring tasks are offloaded only
to trusted nodes. Additionally, a federated asynchronous reinforcement learning algorithm is
employed to optimize offloading decisions, enhancing both security and network performance.

Moreover, scheduling in wireless networks is traditionally designed to optimize perfor-
mance metrics such as bandwidth, power, latency, throughput, and fairness. However, in 6G
networks, scheduling must also balance trustworthiness metrics alongside these traditional
criteria. A reinforcement learning-based scheduler is introduced in [9], that leverages en-
vironmental knowledge, the contextual awareness of network conditions, including channel
state and mobility pattern, to enhance reliability and security. This approach defines service
reliability as a measure of network consistency and service availability as an indicator of secu-
rity, as the lack of service availability has consequences for security breaches. The proposed
reinforcement learning-based scheduler finds a balance between network trustworthiness (in
terms of reliability and security) and fairness among the users.

While the above-mentioned works address trustworthiness in network management, they
mostly focus on limited aspects of trustworthiness, highlighting the need for a more holistic
integration of trustworthiness into network management task optimization.

3.4.3 Challenges and Future Work

Many of the technological advancements in 6G will build upon existing foundations from
previous generations. However, trustworthiness has recently emerged as a key concern in
6G communication, driven by its diverse applications and increasing security, reliability, and
privacy demands. Therefore, several critical challenges remain largely unexplored in the
integration of trustworthiness in 6G network management and must be addressed to ensure
the dependable operation of 6G networks. Some of the key challenges and future research
directions in this domain are outlined below:

• How can trustworthiness assessment and management be seamlessly integrated into
6G networks to enable continuous evaluation and adaptive enhancement of reliability,
security, resilience, privacy and safety?

• What are the most effective methods for trustworthiness-enhanced network manage-
ment tasks such as scheduling, resource allocation, and routing? How to improve trust-
worthiness as much as possible without compromising the network KPIs?
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• How can environmental awareness and sensing data be leveraged in 6G networks to
enhance trustworthiness by mitigating not only external attacks but also errors, failures,
and vulnerabilities inherent in stochastic wireless channels?

• How can 6G networks balance security and privacy in positioning, localization, and
tracking, while leveraging sensing data to enhance trustworthiness without enabling
unauthorized tracking or malicious control of human and non-human assets?

• How to coordinate user-centric safety in network optimization while addressing specific
trustworthiness requirements and data governance policies specified by users throughout
the 6G networks?
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3.5.1 Introduction

The European Union (EU) has been introducing several regulations and directives with the
aim of achieving and maintaining a high common level of privacy and security within the
Union. However, a clear and harmonized view of those obligations is harder to envisage,
and this can be prone to missing links and blind spots that need to be identified as soon
as possible. This section of the White Paper aims to explore and discuss how NIS2 [2] and
CRA [2] must integrate privacy by design requirements from GDPR [3] and highlight the
main (missing) links between these regulations and their impact on 6G networks [4]. This
work contributes to the harmonization of several legal and privacy requirements, not only to
increase literacy, but also to promote a call for action for faster and more adequate compliance
with the various EU regulations, in practice.

3.5.2 State of the Art

NIS2 is a Directive aiming to bring technical and methodological obligations for ex-ante cy-
bersecurity risk management measures of entities that provide critical infrastructure services
in the EU. NIS2 was adopted in 2022 and is effective in all member states from 18th October
2024. NIS2 is the natural evolution from NIS, to provide alignment with the technological
breakthroughs and increased interconnectivity that will be introduced by emerging technolo-
gies or the 6G network and beyond. There are ten measures defined in NIS2, Art. 21 (2),
which comprises the minimum obligations to integrate legality by design into the development
and management of entities’ network and information systems infrastructure. But do these
measures comprise requirements from privacy by design (PbD) as mandated by GDPR? PbD
means that privacy safeguards must be included by default into networked data systems and
technologies [5]. In the sense of 6G, according to PbD, privacy must be incorporated into
the 6G network, including all the enabling technologies, by default. NIS Recital (51) has a
direct reference as to how GDPR requirements for data protection by design and by default
must be “fully exploited”. While NIS2 promotes full cybersecurity processes and policies to
support and backup those processes regarding risk and cybersecurity management, GDPR
PbD principles mostly integrate scattered and general measures that can be picked at each
entity’s will, such as minimization, purpose limitation, pseudonymization or accountability,
to name a few. These measures are not clearly integrated into more complex processes, such
as Incident handling or Business Continuity and Disaster Recovery Plans, as mandated by
NIS2. Also relevant is a link missing between NIS2 Article 21(2.g) “basic cyber hygiene prac-
tices and cybersecurity training” and GDPR PbD principles. Training and awareness can be
successful vehicles for addressing human factor vulnerabilities while promoting prevention of
personal data breaches. However, no clear advice on this issue is referred in GDPR.

Another cybersecurity legislation in EU, the Cyber Resilience Act (CRA), entered into
force on 10 December 2024 to provide a common cybersecurity framework from the design
phase of products with digital elements, needs also to be explored in terms of PbD needs, as
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Figure 3.3: The missing privacy links between NIS2, CRA and GDPR.

it aims to enforce products to be secure by design (SbD). CRA aims to allow users to choose
products with adequate cybersecurity properties or use them in a secure manner (Recital
(1)). Hence, CRA addresses information asymmetry in favor of the consumers by enforcing
mandatory security standards. CRA is applicable both for hardware and software products
and will be fully enforced in 2027. According to CRA Recital (9), malicious actors can attack
all digital items incorporated into or connected to a broader electronic information system
under specific conditions. Thus, even less critical hardware and software can help compromise
a device or network, allowing hostile actors to obtain privileged access or migrate laterally.
Manufacturers must design and build all connectable goods with digital features to meet
the CRA’s key standards of SbD. As such, CRA is also closely interconnected with GDPR
requirements of PbD. It is not possible to have a cybersecurity resilient system without it also
integrating privacy throughout its lifecycle. CRA Recital (32) expresses the contribution to
GDPR enforcement with the establishment of data protection certification mechanisms and of
data protection seals and marks, for the purpose of demonstrating compliance of processing
operations by controllers and processors with GDPR. Moreover, NIS2 and CRA promote
cybersecurity iteratively over products and services’ lifecycle. It is not clear how, within the
supply chain, GDPR can give directions to tackle complex vulnerability management such as
the cascading or propagation of privacy vulnerabilities as stated in Recitals (9) and (43) for
the various system’s hardware and software components (Figure 3.3).

Neither NIS2 nor CRA explicitly detail how PbD should be implemented at a hardware
level or how to tackle real-time data management in a hyperconnected network like 6G.
Apparently, those regulations (and even the EU AI Act [6]) trust and delegate their privacy
needs to GDPR. Next, a discussion on the challenging links between NIS2, CRA and GDPR
in relation to 6G is provided.

3.5.3 Challenges and Future Work

Since NIS2, CRA, and GDPR will constitute a fundamental basis for cybersecurity in 6G
networks, efforts to ensure alignment between these three legislations are also crucial for the
effectiveness of the AI Act and other relevant regulations for 6G. It is also timely to tackle
the legislative gaps for two reasons. First, even if it is unclear for now, a chance for reform
in GDPR is in the air; and secondly, the rapid developments in Generative AI (GenAI) and
the impacts on both privacy and security of embedding Large Language Models (LLMs) into
6G network has just started to be discussed. In a technical turbulence like this, it is also
inadequate for a data protection regulation focusing on the protection of personal data, like
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GDPR, to not provide sufficient protection for privacy or security in the 6G network, as
applications that will be needed by the new communication techniques that will come with
6G, will need the data not only from the users but also from all the elements in the users’
environment. This will lead to the inadequacy of the current data protection law focused
on the protection of personal data because it will potentially be more difficult to distinguish
between personal and non-personal data. Another situation that can reduce the effectiveness
of resilience is that the speed of the benefits of legal remedies could be slower compared to the
speed of data processing in 6G and its consequences. This implies the importance of proactive
and adequate approaches such as PbD for ensuring privacy and security in next-generation
networks.

Given the significant role that AI will play in network operations in the 6G era and
since NIS2 promotes the use of AI to strengthen cybersecurity (Recital 51), understanding
the connection between GDPR, NIS2, and CRA along with identifying any gaps before the
6G network is commercialized is crucial. The dependency of the 6G network on AI can
bring better security and privacy measures [7], but it can also increase risks against those
same measures. The vulnerability surface will rise when large language models (LLMs) are
introduced into the 6G network [10]. As highlighted in the International AI Safety Report,
the key issue in privacy protection for GenAI arises from privacy-noncompliance which, most
of the time, cannot be identified until a data breach occurs [8]. We hereby identify this as
hidden by design. This makes PbD significantly more essential, especially for AI-integrated
6G networks because, as a proactive method, PbD anticipates and prevents privacy risks,
which are often tied to security breaches, before they occur. Being powered by the capacities
of generative AI, 6G network will be data-centric in a way that has never been seen before.
Without robust and harmonized security measures, privacy cannot be effectively ensured,
particularly in the context of next-generation wireless networks like 6G, as “without strong
security, there can be no privacy”. This is the reason that more work on privacy and security
specific to 6G networks is required for the harmonized and effective application of NIS2,
CRA and GDPR. To enable 6G networks to be secure, reliable and trustworthy, the 6G
Industry Association (6G-IA) underlines the importance of merging emerging technologies
with user-centric principles [9] like PbD. However, understanding the correlation and gaps
between EU legal frameworks on security and privacy is a must for harmonized 6G network
security. Software dependencies for all industries, including supply chain security, are among
the top emergency concerns for 2030 by ENISA [11]. NIS2 and CRA compliance should
be interpreted via the framework of GDPR, particularly with regards to gaps for privacy
by design principles to enhance resilience. This would leverage HEXA-X-II’s approach “to
embed security, privacy, and resilience measures throughout the network architecture” [12].
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3.6.1 Introduction

Next Generation Mobile Networks will be composed of integrated software, hardware, and
cloud services from multiple specialized vendors rather than a single supplier; in fact, some
5G networks are already being deployed along these lines. The interdependencies within this
supply chain pose significant cybersecurity risks, as mobile network operators depend on the
security practices of numerous entities beyond their direct control [1]. Recent cyberattacks
have exploited vulnerabilities within these supplier networks, highlighting the supply chain
as a critical weakness [5].

On a related note, the European Union has already recognized the importance of supply
chains in digital products and services and critical infrastructure. The recent NIS2 [2] and
Cyber Resilience Act (CRA) [3] define several requirements to properly manage supply chain
risks both on the organization and product/service level. Furthermore, other technology-
related regulations could also affect the compliance requirements of equipment manufacturers,
software vendors, network operators, and other stakeholders.

This paper aims to i) map out supply chain risks in current 5G and foreseen 6G networks ii)
investigate these through the lens of European regulation, iii) assess whether a risk-based legal
framework is satisfactory for improving supply chain cybersecurity, and finally iv) provide a
glimpse of the situation outside Europe.

3.6.2 State of the Art

Cybersecurity risks in the 5G/6G supply chain

The security of 5G networks is deeply intertwined with the complexity of their supply chains,
where vulnerabilities can emerge at multiple levels. The hardware supply chain consists of
core manufacturers, software developers, security providers, and cloud services at Tier 1,
extending through subcontractors and suppliers across multiple tiers. At each stage, risks
such as counterfeit components, malicious code, backdoors, and insider threats can compro-
mise the integrity of the network. These vulnerabilities introduce potential points of failure
that adversaries can exploit, whether through tampered hardware, unauthorized access, or
embedded security flaws [1].

Compounding these hardware risks, the software development pipeline in 5G networks
presents additional attack vectors. Threat actors target collaborative repositories, build en-
gines, and code repositories, injecting malicious code through compromised third-party tools,
infected testing environments, and manipulated updates. This results in security breaches
that can propagate through the continuous integration (CI) and continuous deployment (CD)
processes, ultimately affecting deployed 5G systems. These risks are particularly concerning
as attackers can exploit them to introduce undetected vulnerabilities, steal sensitive data, or
disrupt network operations.

With both hardware and software vulnerabilities deeply embedded in the 5G ecosys-
tem, identifying and assessing threats becomes increasingly difficult. The layered nature of
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the supply chain obscures accountability, making it challenging to track the origin of security
breaches. Moreover, as attackers leverage sophisticated methods-ranging from exploiting sup-
ply chain dependencies to injecting malware into critical infrastructure-the overall security
posture of 5G networks remains under constant threat. Without visibility into these inter-
connected risks, vulnerabilities persist, leaving networks exposed to potential compromise at
every stage of development and deployment.

The road to 6G. The evolution of networks towards 6G will bring new attack sur-
faces [9]. First, the predicted 6G architecture will integrate Non-Terrestrial Network (NTN)
segments such as Low Earth Orbit (LEO) satellite constellations, High Altitude Platform
Stations (HAPS), and Uncrewed Aerial Vehicles (UAVs) to boost global connectivity, to
serve rural areas and airline passengers, and to provide situational flexibility for emergency
preparedness. Second, 6G is foreseen to be ML-native, relying on the architecture’s inherent
ML capabilities for dynamic resource allocation, increased resiliency (including security), and
energy efficiency. However, the increasing reliance on ML models can also magnify the novel
risks concerning ML models, such as adversarial examples, model poisoning, prompt injec-
tions, sponge attacks, and so on [11]. Both of these factors increase the importance of supply
chain security as new NTN network nodes and ML models are unlikely to be developed and
manufactured by the network operators (or their traditional equipment vendors) themselves.

European regulation

As supply chain cybersecurity questions have started to garner attention, the European Union
has made it a focal point in its new cybersecurity-related regulations. Chief among these for
network equipment and software vendors are the Cyber Resilience Act and the new Product
Liability Directive.

Cyber Resilience Act, 2024. The Cyber Resilience Act (CRA) [3], which took effect on
December 10, 2024, establishes mandatory cybersecurity requirements for manufacturers and
retailers of digital products, referred to as Product Digital Elements (PDEs). The regulation
enforces built-in security measures throughout the entire product lifecycle (a principle known
as the duty of care) to address cybersecurity vulnerabilities and provide consumers with a
standardized framework for identifying secure products.

The CRA classifies PDEs into three risk-based categories. Low-risk products, such as
smart speakers, must adhere to fundamental compliance requirements through self-assessment.
“Critical Class I” products, including password managers, are subject to more stringent se-
curity standards, which necessitate conformity with recognized ISO/IEC/ETSI certifications
or independent audits. The highest-risk PDEs, by contrast, require mandatory third-party
audits. Compliance with the CRA is obligatory; however, PDEs that are already certified
under the voluntary European Cybersecurity Certification Scheme (EUCC) automatically
fulfill CRA requirements.

A key focus of the CRA is supply chain security, particularly concerning third-party
components incorporated into PDEs. Component manufacturers selling within the EU must
comply with the regulation, while PDE manufacturers bear responsibility for ensuring secure
sourcing and vulnerability reporting. If a non-EU component manufacturer does not sell
directly within the EU, the compliance burden shifts to the importer. Additionally, the
CRA mandates the inclusion of a Software Bill of Materials (SBOM) as a crucial artifact
for tracking vulnerabilities. Although digital services such as Software-as-a-Service (SaaS)
fall outside the CRA’s scope, the NIS2 Directive complements it by imposing cybersecurity
and incident reporting obligations on critical service providers; for instance, cellular network
operators.

Certain PDEs regulated under stringent sector-specific frameworks-such as automobiles
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and medical devices-are exempt from the CRA. Open Source Software (OSS) is similarly
excluded, provided it is not monetized, as it does not constitute a commercial activity. Fur-
thermore, official clarifications confirm that neither funding structures nor development con-
ditions influence the commercial status of OSS1.

New Product Liability Directive, 2024. The revised Product Liability Directive
(PLD) [4] has replaced the 1985 directive, which originally established a no-fault strict lia-
bility framework within the European Union. This modernization adapts product liability
regulations to the digital age, ensuring that individuals, including consumers, may seek com-
pensation from manufacturers on a strict liability basis for defective products and, in certain
cases, their components within the EU market. The primary objective of the new PLD is to
streamline the claims process for damages arising from product defects.

The updated directive significantly broadens liability to encompass nearly all supply chain
operators, thereby enhancing consumer protection irrespective of a product’s origin, whether
from within or outside the EU. Moreover, online marketplaces may also be held liable if
they function as de facto sellers, though they can avoid such liability by providing details
of the manufacturer’s EU representative. Consumers are granted access to claim-related in-
formation while ensuring confidentiality, and they may seek compensation in complex cases,
including those involving breaches of safety and security regulations such as the Cyber Re-
silience Act (CRA) or the AI Act. The elimination of arbitrary thresholds further guarantees
full compensation for damages sustained.

The new PLD adopts a comprehensive definition of “product,” encompassing physical
goods, raw materials, and standalone software, including software integrated with artificial
intelligence components. It explicitly addresses emerging technological concerns, including
cybersecurity vulnerabilities, essential digital services, and software updates. As with the
CRA, free and open-source software that falls outside the scope of commercial activity remains
exempt. Additionally, the directive defines “component” broadly to include any integrated
element, such as software libraries, raw materials, or services-such as software-initiated remote
calls to a Software-as-a-Service (SaaS) instance-though standalone services generally remain
outside its scope.

3.6.3 Challenges and Future Work

Based on Section 3.6.2, it seems that the strong-handed combination of ex ante safety and
ex post strict liability regulations of the EU provides sufficient incentives for each supplier
in the 5G supply chain. However, significant technical, legal, and incentive challenges still
remain.

Technical challenges. Software products have been expanding in size and becoming
more complex, in part from referencing and incorporating more third-party libraries and
dependencies. Every additional library makes it more and more difficult to identify design,
logic, and implementation vulnerabilities. Indeed, firms may well have no idea about existing
or newly discovered vulnerabilities in the third-party code they use and deploy. For example,
the widely discussed 2021 log4j incident left companies scrambling to assess whether their
own systems are vulnerable owing to the popularity and large-scale reuse of the log4j package
via the software supply chain [5]. The ineffectiveness of the lengthy assessment enabled
attackers to continue exploiting the Log4Shell vulnerability throughout the next year. With
nearly 30, 000 vulnerabilities disclosed in 2024, and increasing monotonically year over year,
such incidents are bound to happen even more frequently [6]. Legal measures are therefore
necessary, but not sufficient: developing and adopting a systematic approach and associated

1https://openforumeurope.org/eu-cyber-resilience-act-takes-a-leap-forward/
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guidelines for exploring supply chain security risks is therefore a must. Furthermore, while
the application of SBOMs could improve transparency, open-source and easy-to-use tools for
SBOM creation, management, and analysis are sorely needed.

Another challenge is posed by the increasingly complex nature of 5G and 6G network
ecosystems: the traditional perimeter-based cybersecurity controls deployed by telcos are no
longer adequate. In fact, when components (nodes, ML models, software, etc.) of the net-
work architecture themselves cannot be assumed trustworthy anymore, a Zero-Trust Archi-
tecture [12] is required. In such a security architecture, components need to be continuously
monitored for anomalous behavior; how to achieve this without compromising performance
and usability is far from trivial and an active research topic.

Legal and incentive challenges. Next to the technical challenges, we believe that
better quality software (hardware, firmware, etc.) will not be produced without aligning eco-
nomic incentives in their respective ecosystems. The most critical misalignment is that the
harm caused by software problems is, by and large, shouldered by consumers, not vendors.
This lack of liability means software vendors have every incentive to rush low-quality software
onto the market and no incentive to enhance quality control. While European legislation,
including the CRA, the PLD, and also NIS2 [2] from the 5G network operator side, defines
strong incentives via penalties for non-compliance, in other parts of the world, the US, in
particular, may require a predominantly market-based approach with minimal legislative ele-
ments. Such a complex mechanism is still very much under research currently, although strict
requirements for information systems sold to federal institutions have already been passed [7];
these may have a beneficial spillover effect on the telecommunications sector. Furthermore,
a promising proposal based on a mandatory but minimal product-based audit (floor) and a
voluntary but liability-waiving process-based audit (ceiling) has been put forward to align
the incentives of all stakeholders [13].

3.6.4 References

[1] M. Lyu, J. Farooq, and Q. Zhu, “Mapping Cyber Threats in the 5G Supply Chain: Land-
scape, Vulnerabilities, and Risk Management,” IEEE Network, vol. 39, no. 1, pp. 251–
260, 2025. doi: 10.1109/MNET.2024.3439011.

[2] THE EUROPEAN PARLIAMENT AND THE COUNCIL OF THE EUROPEAN
UNION, “Directive (EU) 2022/2555 of the European Parliament and of the Council of 14
December 2022 on measures for a high common level of cybersecurity across the Union...”
Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:
32022L2555 (accessed 1 Feb. 2025).

[3] THE EUROPEAN PARLIAMENT AND THE COUNCIL OF THE EUROPEAN
UNION, “Regulation (EU) 2024/2847 of the European Parliament and of the Council of
23 October 2024 on horizontal cybersecurity requirements for products with digital ele-
ments and amending Regulations (EU) No 168/2013 and (EU) 2019/1020 and Directive
(EU) 2020/1828 (Cyber Resilience Act),” Available: https://eur-lex.europa.eu/leg
al-content/EN/TXT/?uri=CELEX:32024R2847 (accessed 1 Feb. 2025).

[4] THE EUROPEAN PARLIAMENT AND THE COUNCIL OF THE EUROPEAN
UNION, “Directive (EU) 2024/2853 of the European Parliament and of the Council
of 23 October 2024 on liability for defective products and repealing Council Directive
85/374/EEC ,” Available: https://eur-lex.europa.eu/eli/dir/2024/2853/oj/eng
(accessed 1 Feb. 2025).

62

https://doi.org/10.1109/MNET.2024.3439011
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32022L2555
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32022L2555
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32024R2847
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32024R2847
https://eur-lex.europa.eu/eli/dir/2024/2853/oj/eng


[5] R. Hiesgen, M. Nawrocki, T. C. Schmidt, and M. Wählisch, “The Log4j Inci-
dent: A Comprehensive Measurement Study of a Critical Vulnerability,” IEEE
Trans. Network and Service Management, vol. 21, no. 6, pp. 5921–5934, 2024.
doi: 10.1109/TNSM.2024.3440188.

[6] MITRE, “CVE Metrics.” Available: https://www.cve.org/about/Metrics (2025).

[7] White House, “Executive Order on Strengthening and Promoting Innovation in the
Nation’s Cybersecurity,” Available: https://www.federalregister.gov/documents/
2025/01/17/2025-01470/strengthening-and-promoting-innovation-in-the-nat
ions-cybersecurity (Jan. 16, 2025).

[8] Federal Office for Information Security, Germany, “Technical Guideline TR-03183: Cyber
Resilience Requirements for Manufacturers and Products,” Available: https://www.bs
i.bund.de/EN/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifi
zierung/Technische-Richtlinien/TR-nach-Thema-sortiert/tr03183/tr-03183.h
tml?nn=132646 (accessed 1 Feb. 2025).

[9] M. Ozger, I. Godor, A. Nordlow, T. Heyn, S. Pandi, I. Peterson, A. Viseras, J. Holis,
C. Raffelsberger, A. Kercek, et al., “6G for connected sky: A vision for integrating
terrestrial and non-terrestrial networks,” in Proc. 2023 Joint European Conf. Networks
and Communications & 6G Summit (EuCNC/6G Summit), pp. 711–716, 2023. Available:
https://arxiv.org/abs/2305.04271

[10] M. A. Uusitalo, P. Rugeland, M. R. Boldi, E. C. Strinati, P. Demestichas, M. Ericson,
G. P. Fettweis, M. C. Filippou, A. Gati, M.-H. Hamon, et al., “6G vision, value, use
cases and technologies from European 6G flagship project Hexa-X,” IEEE Access, vol. 9,
pp. 160004–160020, 2021. Available: https://doi.org/10.1109/ACCESS.2021.313003
0

[11] N. Papernot, P. McDaniel, A. Sinha, and M. P. Wellman, “Sok: Security and privacy
in machine learning,” in Proc. 2018 IEEE European Symp. Security and Privacy (Eu-
roS&P), pp. 399–414, 2018. Available: https://doi.org/10.1109/EuroSP.2018.00035

[12] Rose, Scott; Borchert, Oliver; Mitchell, Sean; and Connelly, Sean, “Zero Trust Architec-
ture,” NIST Special Publication 800-207, National Institute of Standards and Technol-
ogy, Gaithersburg, MD, USA, 2020. Available: https://doi.org/10.6028/NIST.SP.
800-207

[13] G. Biczók, S. Romanosky, and M. Liu, “Realigning Incentives to Build Better Software:
A Holistic Approach to Vendor Accountability,” arXiv preprint arXiv:2504.07766, 2025.
Available: https://arxiv.org/abs/2504.07766

63

https://doi.org/10.1109/TNSM.2024.3440188
https://www.cve.org/about/Metrics
https://www.federalregister.gov/documents/2025/01/17/2025-01470/strengthening-and-promoting-innovation-in-the-nations-cybersecurity
https://www.federalregister.gov/documents/2025/01/17/2025-01470/strengthening-and-promoting-innovation-in-the-nations-cybersecurity
https://www.federalregister.gov/documents/2025/01/17/2025-01470/strengthening-and-promoting-innovation-in-the-nations-cybersecurity
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/Technische-Richtlinien/TR-nach-Thema-sortiert/tr03183/tr-03183.html?nn=132646
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/Technische-Richtlinien/TR-nach-Thema-sortiert/tr03183/tr-03183.html?nn=132646
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/Technische-Richtlinien/TR-nach-Thema-sortiert/tr03183/tr-03183.html?nn=132646
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/Technische-Richtlinien/TR-nach-Thema-sortiert/tr03183/tr-03183.html?nn=132646
https://arxiv.org/abs/2305.04271
https://doi.org/10.1109/ACCESS.2021.3130030
https://doi.org/10.1109/ACCESS.2021.3130030
https://doi.org/10.1109/EuroSP.2018.00035
https://doi.org/10.6028/NIST.SP.800-207
https://doi.org/10.6028/NIST.SP.800-207
https://arxiv.org/abs/2504.07766


64



Chapter 4

Evolving Threats and Protective
Strategies
Chapter Editors: An Braeken1, Miranda Harizaj 2, Gergely Biczók 3, Gurjot Singh Gaba 4

1 Vrije Universiteit, Brussel, Belgium
2 Polytechnic University of Tirana, Albania
3 CrySyS Lab, Budapest University of Technology and Economics, Hungary
4 Department of Computer and Information Science (IDA), Linköping University (LiU), Sweden

4.1 Introduction
Next-generation wireless architectures are characterized by a multi-dimensional and syn-
chronously evolving attack surface, a critical aspect underscored by the diverse cases presented
in this chapter. The rapid advancement of technologies like 5G-Advanced and 6G, coupled
with the proliferation of interconnected devices and the integration of artificial intelligence,
introduces unprecedented vulnerabilities that span from the foundational physical layer to
complex application-specific contexts and even human factors. This chapter delves into the
dynamic landscape of security challenges and the protective measures being developed to
counter them. We begin by exploring the fundamental security protocols for future wireless
communication systems, examining their innovations and the inherent implementation chal-
lenges. Following this, we investigate specific technical threat vectors, focusing on advanced
fingerprinting techniques, including website fingerprinting in anonymous networks and RF
fingerprinting for wireless device authentication, and the critical implications of Wi-Fi signal
spoofing in localization.

Recognizing that technology alone cannot guarantee security, we then shift our focus to
the human-centered aspects of cybersecurity, emphasizing the role of user behavior and aware-
ness. Finally, the chapter concludes by examining security challenges and solutions within
specific high-stakes application contexts, including the Internet of Medical Things (IoMT)
and wireless network security in aviation, highlighting the unique threats and protective mea-
sures required for these critical verticals. By systematically analyzing these evolving threats
and the corresponding protective strategies, this chapter aims to provide a comprehensive
understanding of the current security landscape and future research directions for robust
next-generation wireless systems.
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4.2.1 Introduction

The security landscape of future wireless communication systems is becoming increasingly
complex due to the growing scale of connected devices, advancements in cryptographic
threats, and evolving network architectures. A major concern is the rise of quantum com-
puting, which threatens traditional public-key encryption methods like RSA and ECC, po-
tentially rendering them obsolete. While symmetric encryption schemes such as AES remain
secure, they may require increased key sizes to counteract quantum threats [1].

Additionally, the proliferation of connected devices, ranging from high-performance edge
computing nodes to low-power IoT sensors, necessitates scalable and efficient security so-
lutions. Traditional security protocols often struggle to meet these demands, calling for
new approaches that provide both resilience and efficiency. Emerging technologies, including
post-quantum cryptography, AI-driven security mechanisms, and decentralized authentica-
tion frameworks, are being explored to mitigate these challenges and ensure secure, scalable,
and adaptive wireless security solutions.

4.2.2 State of the Art

Recent advances in wireless network security have led to the exploration and adoption of sev-
eral innovative technologies and approaches designed to address emerging threats, particularly
in the context of quantum computing, resource-constrained environments, and decentralized
architectures.

Post-quantum cryptographic algorithms, such as lattice-based and code-based encryption
schemes, have emerged as viable solutions to counter the threats posed by quantum com-
puting. Unlike traditional cryptographic methods that rely on hard problems like integer
factorization and discrete logarithms, post-quantum techniques offer resistance against quan-
tum attacks while preserving robust security properties [2]. However, these schemes often
come with increased communication overhead rather than computational complexity, which
can challenge their deployment in environments with limited bandwidth or energy resources.
To address uncertainties in current standardization efforts and provide a path for gradual
integration, hybrid cryptographic approaches that combine classical and post-quantum mech-
anisms have been proposed. These offer enhanced security guarantees during the transition
phase and maintain long-term resilience across diverse devices and networks [3].

In parallel, the proliferation of Internet of Things (IoT) devices and edge computing
systems has driven the need for lightweight cryptographic solutions tailored to resource-
constrained environments. Lightweight protocols, primarily based on symmetric key prim-
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itives [4, 5], have been developed to minimize computational burden, memory usage, and
power consumption. While symmetric encryption is highly efficient, it suffers from scala-
bility and key management limitations, as each device pair must share a unique secret key.
This introduces vulnerabilities such as exposure risk if a key is compromised. Furthermore,
symmetric schemes lack built-in mechanisms for non-repudiation. Nevertheless, due to their
performance benefits, they remain essential for real-time applications, bulk encryption tasks,
and scenarios where low-latency operation is critical [6].

The integration of artificial intelligence (AI) and machine learning (ML) into wireless
security systems has further transformed the threat detection landscape. AI-driven security
mechanisms enable real-time analysis of network behavior, facilitating dynamic and adap-
tive threat detection. These systems learn from evolving attack patterns, allowing them
to respond to previously unseen threats. This capability makes AI particularly effective in
complex and changing wireless environments. However, the effectiveness of such systems is
contingent upon access to large, diverse datasets and substantial computational resources for
training and operation, which may limit their applicability in constrained settings.

Another innovative direction involves the application of blockchain technology to enhance
trust and authentication in wireless systems. Blockchain’s decentralized and tamper-resistant
ledger provides a robust foundation for secure identity management and device authentication
without reliance on centralized authorities [7]. This is especially beneficial in IoT networks,
where establishing trust among numerous heterogeneous devices is a significant challenge. De-
spite its advantages, blockchain implementations can be resource-intensive, with high energy
consumption and computational demands that may affect scalability and responsiveness.

Complementing these higher-layer techniques, physical layer security (PLS) has gained
traction as a method to safeguard data transmissions by leveraging the inherent properties of
the wireless channel [8]. Techniques such as channel-based encryption use the randomness and
reciprocity of wireless signals to generate secure keys or provide confidential communication
with minimal computational requirements [9]. These methods are particularly attractive for
scenarios where low overhead is necessary. However, the effectiveness of PLS can be heavily
influenced by environmental dynamics, such as mobility and signal interference, which limit
its reliability and consistency in large-scale or rapidly changing networks.

To holistically evaluate these emerging technologies, a comparative analysis is presented
in Table 4.1, outlining the trade-offs and suitability of each approach within wireless systems.
This analysis underscores the importance of adopting a layered security strategy that com-
bines multiple mechanisms to address the diverse and evolving challenges in securing future
wireless networks.

Table 4.1: Comparison of Traditional and Emerging Security Protocols for Wireless Systems

Protocol Type Examples Strengths Limitations Suitability for Future Systems
Traditional WPA2, IPSec Strong encryption, widely implemented Vulnerable to quantum attacks, scalability issues Limited, needs upgrade
Post-Quantum Cryptography Lattice-based, Code-based Quantum-resistant, future-proof Computationally intensive, standardization needed High, essential for 6G
AI-Driven Security Machine learning, anomaly detection Real-time threat detection, adaptive Requires training data, computational resources High, suitable for dynamic networks
Blockchain-Based Decentralized authentication Secure, tamper-proof, trust management High energy consumption, complexity Moderate, potential for IoT
Physical Layer Security Channel-based encryption Exploits wireless properties, low overhead Limited by environment, less mature High, complements other methods

4.2.3 Challenges and Future Work

Standardization and Interoperability A major challenge in implementing emerging
security solutions is the need for global standardization to ensure interoperability across
different devices and network infrastructures. Organizations such as IEEE and 3GPP are
actively working on defining security benchmarks for next-generation wireless systems. How-
ever, achieving widespread adoption requires collaboration between industry, academia, and
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government bodies.

Integration with Existing Infrastructure Deploying new security protocols without
disrupting existing wireless infrastructure presents a significant challenge. Many current
networks are built on legacy systems that may not be compatible with advanced cryptographic
methods. Transitioning to post-quantum cryptography, for example, requires careful planning
to minimize disruptions while maintaining robust security.

Computational Overhead and Scalability Advanced security mechanisms, such as
post-quantum cryptography and AI-driven threat detection, often require high computational
resources and high communication costs. This poses challenges for large-scale deployment,
particularly in IoT environments with constrained devices. Future research should focus on
optimizing these methods to enhance efficiency while maintaining strong security guarantees.

Implementation Aspects and Performance Security mechanisms are often deployed
in embedded systems and handheld devices, such as mobile equipment, smartphones, and
e-health gadgets. The efficiency of these security implementations depends on factors such as
processing power, memory constraints, energy consumption, and system latency. In highly
constrained environments, including the IoT and next-generation wireless networks (5G/6G),
security solutions must operate within strict technical limitations while ensuring minimal
impact on system performance. This requires careful optimization of cryptographic compu-
tations, authentication protocols, and data integrity mechanisms to balance security with
system efficiency.

Real-World Testing and Deployment Real-world testing of advanced security solutions,
especially those targeting quantum threats, is challenging due to the limited availability of
quantum computers. Unlike traditional security protocols that can be tested on existing
infrastructure, validating post-quantum cryptographic approaches requires access to high-
performance quantum machines, which are currently restricted to a few organizations. This
limitation makes it difficult to assess their real-world viability under genuine quantum at-
tack scenarios. As a result, researchers rely on simulations and theoretical models, which,
while insightful, do not fully replicate quantum threats. Expanding access to quantum com-
puting and developing standardized testing frameworks will be essential for evaluating the
practicality of these emerging security solutions.

4.2.4 Conclusion

Future wireless security must address challenges related to quantum threats, large-scale con-
nectivity, and dynamic network environments. Emerging solutions such as post-quantum
cryptography, AI-driven security, blockchain-based authentication, and physical-layer secu-
rity offer promising advancements. However, their implementation requires careful considera-
tion of standardization, efficiency, and real-world applicability [9]. Striking a balance between
security requirements and key implementation factors, such as performance, resource alloca-
tion, and energy efficiency, is crucial for next-generation systems. A proactive, multi-layered
security approach will be essential to ensuring resilience, scalability, and long-term protection
in future wireless networks.
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4.3.1 Introduction

Anonymous communication networks (ACNs) such as Tor, I2P, Freenet, and Lokinet have
become foundational infrastructures for ensuring online privacy. These systems function by
concealing users’ identities and routing traffic through layers of encryption to obscure source-
destination relationships. Yet, even within these protective environments, adversaries can
exploit side-channel information through a technique known as website fingerprinting (WF)-
a form of traffic analysis that uses patterns in packet size, direction, and timing to infer which
websites a user visits.

Anonymity networks are essential for shielding individuals from intrusive surveillance and
fostering digital freedom. However, the continuous advancement of surveillance technologies
and deanonymization techniques increasingly challenges the effectiveness of these networks.
This evolving tension reflects a broader societal issue: the urgent need to cultivate a digi-
tal environment where individuals can interact, seek information, and communicate without
sacrificing their right to privacy. Addressing this challenge demands not only technical in-
novation but also a nuanced understanding of the complex interplay between anonymity,
visibility, and the evolving threats to both personal and collective privacy.

Figure 4.1 illustrates various digital fingerprinting techniques, highlighting their data
collection methods, tracking scope, and privacy implications. These techniques range from
device and browser fingerprints to behavioral and cross-device identifiers, forming a critical
intersection between anonymity and identification in cybersecurity.

The growing capabilities of WF attacks have been significantly amplified by recent ad-
vances in machine learning, deep learning, and large-scale traffic analysis. These develop-
ments have enabled more accurate and generalizable attacks, often surpassing traditional
limitations. The problem is especially acute in wireless network contexts-ranging from public
Wi-Fi to mobile and ad-hoc networks-where traffic variability, device diversity, and exposure
to local adversaries increase users’ vulnerability to passive monitoring.

Here, we provide a conceptual overview of the current state of website fingerprinting
research, classifying attack methodologies and defense strategies while highlighting key trends
and open challenges.

4.3.2 State of the Art

The body of WF research can be interpreted through three interwoven lenses: the episte-
mological orientation of the studies, the adversarial interaction paradigm and the network
or application context. Together, these lenses help clarify both the diversity of current ap-
proaches and the underlying assumptions that shape them.

From an epistemological point of view, WF studies range from empirical to theoretical.
Experimental work typically evaluates the performance of attacks or defenses on bench-
mark datasets under controlled conditions. These studies aim to demonstrate effectiveness
in practical scenarios, measuring metrics such as classification accuracy or evasion success.
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Figure 4.1: Extensive Overview of Digital Traces [1].

In contrast, theoretical work delves into formal models, privacy limits, and abstract threat
frameworks, seeking to generalize findings and inform principled system design.

A second axis of classification involves the nature of the adversarial strategy. Passive
attacks dominate the literature, relying only on observation to classify web traffic based
on statistical regularities or machine-learned patterns. These models often exploit burst
sequences, packet timing, and flow directions to construct traffic fingerprints. Active attacks,
though less common, introduce controlled perturbations, such as delayed injections or packet
flows, to amplify signal differences. Although potentially more effective, active methods raise
ethical questions and risk detection.

The third dimension concerns the system context and target scope. WF attacks have
evolved beyond single-tab website classification to include more complex settings: multi-tab
browsing, mobile users, hidden services, and cross-network scenarios. Many recent studies
evaluate attacks on closed-world datasets with a limited set of monitored sites. Others adopt
open-world settings that better simulate realistic usage but pose greater challenges due to
class imbalance and noise. The inclusion of real-world wireless traffic remains limited, despite
its growing relevance.

Figure 4.2: Key milestones in website fingerprinting research across the last decade.

A review of recent literature reveals several methodological shifts, many of which are
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reflected in Figure 4.2 [2, 3]. Deep learning, particularly using convolutional neural net-
works (CNNs), transformers, and graph neural networks (GNNs) [4], has largely supplanted
traditional classifiers. Transfer learning and few-shot learning have improved model adapt-
ability, allowing attacks to generalize across different traffic environments [5]. Furthermore,
adversarial machine learning is increasingly used both to craft robust attacks and to generate
evasive perturbations as part of defense mechanisms [6]. These trends indicate a maturing
field in which technical sophistication is balanced with growing concerns about generalization,
scalability, and ethics.

4.3.3 Challenges and Future Work

Despite notable advances, website fingerprinting remains a deeply contested space, with fun-
damental challenges yet unresolved. Wireless environments, in particular, present a set of
unique difficulties that require fresh approaches and interdisciplinary collaboration.

A primary challenge is building resilience in unstable conditions. Network traffic is inher-
ently variable-subject to jitter, intermittent connections, and bandwidth fluctuations. Most
WF models assume relatively stable network behavior and degrade when faced with dynamic
conditions. Future research must explore adaptive and noise-tolerant models that maintain
performance without frequent retraining.

Another pressing concern is the development of lightweight defenses suitable for mo-
bile and embedded systems. Many current techniques-such as traffic padding, morphing, or
adversarial noise injection-incur substantial computational or bandwidth costs. These are
infeasible for low-power devices or high-latency applications. defenses must evolve to become
context-aware, responsive to traffic state, and efficient in both energy and data use.

Cross-domain generalization also remains elusive. Attacks that perform well in controlled
settings often fail when deployed across different browsers, operating systems, or network
types. Research into domain-invariant representations and robust training paradigms could
close this gap, enhancing both attack realism and defense reliability.

In summary, as attacks become more adaptable and environments more complex, the
challenge is to develop holistic, scalable, and ethically grounded approaches to defending
anonymity-especially in the wireless age.
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4.4.1 Introduction

Next generation networks (beyond 5G) are expected to support ultra dense device connec-
tivity with the proliferation of radio devices along with increased use of Internet of Things
(IoT). Authentication of IoT devices typically rely on cryptographic algorithms for key ex-
change and unique device identifiers, typically software addresses, that is, MAC address. Key
generation and exchange require relatively long time and complex computations which IoT
devices mostly cannot afford. As RFF relies on unique characteristics of IoT transmitters,
therefore, it could be enabling technology, and has been emerged as a candidate authentica-
tion technique for low power, computation-constrained devices of next generation networks.
Radio frequency fingerprinting (RFF) is a signal intelligence method whereby unique char-
acteristics of radio transmitting devices are extracted to aid device identification. Unique
characteristics, so-called fingerprints or signatures, specifically, are due to the imperfections
in manufacturing of components or chipsets like amplifiers, filters and clock generators. These
imperfections lead to variations in the signal characteristics that result in, for example, phase
offset, IQ imbalance, clock skew, and some others [1].

As fingerprints play a unique role in the identification of RFF devices, fingerprint extrac-
tion is the most critical stage of RFF techniques. Human-made or human-extracted features
are based on manually extracted hardware features, where experts are expected to work on the
received signal characteristics to identify the most robust features. However, the recent trend
is to employ artificial intelligence (AI) to extract features along with classification. It may
also be possible to employ hybrid, that is, combining human-extracted features with artificial
intelligence, that is, integrating deep learning techniques [2]. Despite recent advancements,
there remains a gap in practical, scalable deployment of RFF systems, particularly concerning
lightweight AI model optimization, adaptability to real-world environmental variables, and
robustness in open-set scenarios [3].

4.4.2 State of the Art

Recent research efforts have been directed toward AI-aided RFF identification systems.A
comprehensive overview of RFF methods, covering both traditional and AI-driven approaches
while identifying key scalability challenges, is provided in [1]. The findings of experimental
studies conducted with open-access datasets suggest that AI-aided RFF techniques have been
a standard approach [3]. The targeted applications along with operational bands and proto-
col are quite diverse. LoRA (868 MHz), ZigBee (2505MHz), Bluetooth(2400 MHz), ADS-B
(1090 MHz) and WiFi (2400 MHz) are some common protocols [4]. Smart city ecosystem
seems to be the major application domain as huge number of IoT devices are to be deployed
in this ecosystem. To be specific on AI-aided RFF, recent advancements in Radio Frequency
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Fingerprinting (RFF) have increasingly leveraged deep learning techniques to strengthen de-
vice authentication, particularly within IoT networks. Additionally, the practical deployment
challenges and potential of integrating RFF systems into industrial infrastructures such as
smart grids as an integral part of smart city ecosystem, addressing regulatory, implemen-
tation, and scalability aspects crucial for real-world industrial environments is emphasized
in [5]. Further, the detailed RFF identification process and its practical limitations, such
as low signal-to-noise ratios and the need for robust open-set recognition are outlined in [6].
Several studies have explored lightweight deep learning models for LoRa devices, focusing on
balancing classification accuracy with real-time deployment feasibility [7].

4.4.3 Challenges and Future Work

The challenges and future works can be directed to the following major aspects of RFF
identification systems.

Open-set authentication Contemporary RFF aims to authenticate devices in an open-
set scenario, where rogue devices attempt to access network resources. Recent advances in
AI-aided RFF techniques have enabled the extraction of highly generalized features, crucial
for detecting rogue devices not encountered during the training phase and enhancing authen-
tication. Open-set authentication, that is, the capability of the system to recognize and reject
devices that were not seen during training is very critical.

Development and Optimization of AI Models for Implementation on Edge De-
vices Performance metrics such as classification accuracy and openness are widely rec-
ognized as crucial in RFF research efforts. Low inference latency holds significant impor-
tance, particularly in the context of next generation networks where ultra-reliable and low-
latency communications (URLLC) is paramount. Practical IoT deployments may require
bi-directional communication necessitating the implementation of RFF directly on edge de-
vices. Then, there is a need to develop lightweight AI models optimized for edge deployment.
These models should authenticate and classify devices in real time while ensuring that clas-
sification accuracy is upheld even at a high value of openness.

Characterization and Mitigation of Operational Effects on Performance Envi-
ronmental and operational conditions, the physical layer or the channel, significantly impact
classification accuracy. This is an inherent challenge in RFF as it operates at the physical
layer. Aside from wireless channel effects which has been studied to some extent, tempera-
ture variations between training and inference stages may reduce classification accuracy. It
is pertinent to note that the effect of aging has not been characterized over a long duration
of time in a detailed study. Moreover, it is reasonable to assume that an RFF receiver used
in the training and testing stage shall be different from the one deployed in a practical ap-
plication. The studies have shown that changing the receiver between training and inference
significantly compromises classification accuracy.

Testing and validation in an application domain It is quite important to test and
validate RFF authentication and access control system in a practical setting, typically, one
or two components of a smart city ecosystem. For example, smart grids are vital to en-
ergy infrastructure, and the cybersecurity of IoT devices is paramount. Such demonstration
validates the RFF system under real-world conditions, assessing its performance in diverse
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environmental and operational scenarios. It may also demonstrate the RFF authentication
capability in a complex and dynamic environment, ensuring robustness and reliability.

RFF: A Double-Edged Sword for Security and Privacy Radio Frequency Finger-
printing (RFF) has a dual nature: it can serve as a powerful tool for enhancing security,
authentication, and anti-fraud measures, yet it also poses significant threats to user privacy
if misused. Its ability to uniquely identify devices based on hardware-level signal imperfec-
tions makes it highly effective for device-level authentication, access control, and even theft
prevention-particularly within IoT ecosystems. However, this same persistent identifiability
raises serious concerns [9, 8]. RFF enables persistent, passive, and unconsented tracking and
profiling of users across networks and locations, often without their knowledge-potentially vi-
olating privacy regulations such as the GDPR [10] in EU. Unlike changeable identifiers such
as IP or MAC addresses, RF fingerprints are difficult to spoof or reset, creating opportunities
for long-term behavioral surveillance. These fingerprints can be used to infer patterns in
movement, device usage, and other behaviors, especially when combined with auxiliary data
sources. Malicious actors, overreaching institutions, or even legitimate entities may exploit
these identifiers for targeted surveillance and profiling, with particularly serious implications
in authoritarian contexts. The lack of user control and the potential for data leakage fur-
ther amplify these vulnerabilities, particularly when RF data is intercepted or used to link
devices to personal information. Therefore, while RFF can enhance user security, its deploy-
ment must be guided by strong privacy-by-design principles, robust technical safeguards, and
meaningful user consent to ensure it protects rather than undermines individual rights.
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4.5 Spoofing of Wi-Fi signals in fingerprinting-based localiza-
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4.5.1 Introduction

Wi-Fi-based indoor positioning has gained significant attention due to the ubiquitous avail-
ability of Wi-Fi infrastructure and its integration into consumer devices. However, since
Wi-Fi operates in an unlicensed frequency spectrum, it is vulnerable to security threats such
as Access Point (AP) spoofing, which can distort positioning accuracy. Therefore, it is im-
portant to address AP spoofing in fingerprinting-based localization.

4.5.2 State of the Art

AP spoofing involves malicious entities impersonating legitimate Wi-Fi access points, caus-
ing devices to receive signals from fake APs. This deception can result in higher localization
errors, which can challenge location-based services. Several studies have explored the vulner-
abilities of WLAN-based positioning systems to such spoofing attacks and proposed solutions
to reduce the impact of spoofing signals.

It is assumed that AP spoofing can affect the performance of the localization system
significantly, reducing the accuracy of the system and misleading the users and services that
rely on estimated position. The impact of different numbers of spoofed APs on KNN (K-
Nearest Neighbour) algorithm under two scenarios was evaluated using the UJIIndoorloc
dataset in [1], and results are shown in Figure 4.3. The first scenario considered in this
case is represented by randomly spoofed APs, with RSS values ranging between -30 dBm
and -70 dBm. On the other hand, the second scenario was based on the replay of Received
Signal Strength (RSS) samples collected at different positions, the RSS values in this case
were between 0 dBm and -100 dBm. It should be noted here that since KNN localization is
deterministic and is not trained on radiomap data the impact of spoofing is limited. However,
the impact on machine learning based localization algorithms is more significant.

From the figure, it can be seen that the impact of the spoofing increases with the number
of the spoofed APs which is expected behavior. Moreover, the impact was more significant
in case of the RSS replay spoofing.

Yang et al., [3] developed a technique for the detection of false signals based on spatial cor-
relation. Their method is based on the assumption that the RSS measured by the landmarks
is correlated to the location of the transmitter and distance from the landmark. Therefore, it
should be possible to detect spoofed localization requests. However, implementation requires
additional infrastructure, and landmarks will also detect spoofed signals.

Furthermore, Jiang et al., [4] proposed a virtual MAC spoofing detection method based
on deep learning algorithms and anomaly detection to analyze patterns in network traffic.
The proposed solution has the ability to detect MAC spoofing attempts. The authors re-
ported an average detection accuracy of 95 %. However, the solution requires Channel State
Information (CSI) measurements, which are not readily available on consumer devices, and
active communication with the device that has a spoofed MAC address.

Another notable approach was proposed by Restuccia et al., in [5]. The proposed Location
Validation System (LVS) protects the location system service from spoofing attacks. The
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Figure 4.3: Impact of different number of spoofed APs on KNN algorithm [1].

solution is based on the validation of position by neighbouring nodes in validation rounds.
These neighbouring nodes could be represented by mobile devices, e.g. smartphones, that
can operate as Wi-Fi hotspots. The proposed solution thus can handle spoofed position
estimates, however, if there are signals from fake APs in the area all devices may be affected
by spoofing and thus this approach is not viable in this scenario.

In addition to software-based solutions, hardware-based fingerprinting approaches have
been explored. Tian et al., [6] discussed the potential of identifying unique devices through
their hardware characteristics, using the Wasserstein metric to detect spoofing attacks in Wi-
Fi networks. The idea is based on the fact that each device has slightly different hardware
characteristics, which could be used to detect signals generated by fake APs. In the proposed
method frequency offsets of signals received from APs with different MAC addresses are
compared, in order to validate that these signals are not transmitted by a single device. In
order to perm the classification, a large number of collected samples is required.

However, the methodologies mentioned above require additional measurements of RSS
samples or use CSI measurements, which are not readily available on consumer devices. The
Spatially Filtered K-Nearest Neighbors (SFKNN) algorithm has been proposed to improve
the detection of AP spoofing in Wi-Fi fingerprinting-based positioning systems [7]. SFKNN
integrates spatial filtering with the traditional KNN approach, analyzing spatial inconsisten-
cies in RSS data to identify potential spoofing activities. By incorporating spatial context,
SFKNN aims to improve the robustness of positioning systems against malicious interference,
effectively distinguishing between legitimate signal variations and those induced by spoofing
attempts.

The overview of the above-mentioned solutions for AP spoofing detection is summarized in
Table 4.2. From the table it is clear that spoofing detection based on metadata from radiomap
implemented in SFKNN can provide results without a need for additional measurements.
Moreover, the processing can be performed offline during the setup of the localization system
thus the complexity of the system is not affected significantly. However, from the results
presented in [7] it is clear that the algorithm has a relatively high number of false-positive
results, which was around 10 %. Moreover, detection works better in the case of random
spoofing compared to RSS replay. The spoofing detection was above 90 % and above 70 %
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Table 4.2: Summary of methods for spoofing detection in Wi-Fi localization.

Ref. Contribution Limitation
[3] Detection of spoofed informa-

tion using spatial correlation.
Requires installation of landmarks in localiza-
tion area, resulting in increased cost of both in-
frastructure and maintenance.

[5] Detection of spoofed posi-
tion estimates using data from
neighbouring nodes

Requires cooperation between individual devices
in the area. It does detect spoofed positions, not
spoofed signals.

[4] Use of CSI measurements and
deep learning.

Limited access to CSI measurements on off-the-
shelf devices, which are widely used in Wi-Fi
localization

[6] Detection of multiple sig-
nals transmitted by a single
fake AP.

Requires a large number of samples, thus intro-
ducing a significant delay in the localisation pro-
cess.

[7] Detection based on metadata
from radio map.

Preprocessing of data in the radio map during
the offline phase.

when the number of spoofed APs was ≥ 3 for random and RSS replay spoofing, respectively.

4.5.3 Challenges and Future Work

Despite these advances, there are still challenges in effectively mitigating AP spoofing. The
dynamic nature of indoor environments and the proliferation of Wi-Fi devices require a
continuous refinement of the detection algorithms. Future research directions include inte-
grating machine learning techniques for adaptive filtering and conducting extensive testing in
real-world deployment scenarios to ensure robustness against evolving spoofing techniques.
Moreover, solutions should be proposed to further improve the spoofing detection accuracy.
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4.6.1 Introduction

Next-generation wireless systems, including 5G and 6G networks, are reshaping the digital
landscape. These infrastructures promise new possibilities such as ultra-low latency, high-
speed connectivity, and support for massive device connectivity. Their capabilities are enabled
by advances in technologies such as machine learning (ML) and artificial intelligence (AI).
With these developments, cutting-edge applications-such as the Internet of Things (IoT),
Extended Reality, cloud computing, pervasive sensing, and real-time remote services-can
thrive. However, the increasing complexity and interconnectivity of these systems expand the
surface of potential security vulnerabilities, many of which elude resolution through technical
solutions alone [19]. Notably, these technologies do not exist in isolation. They are embedded
within broader socio-technical systems and shaped by human actors operating in diverse roles
and contexts. As such, an adequate understanding of cybersecurity must extend beyond
purely technical considerations to engage with the human, social, and institutional dimensions
of digital security. To date, however, most dominant cybersecurity perspectives characterise
the human element as the “weakest link” [6], framing users primarily as risks to be mitigated.
This reductive stance overlooks the situated complexity of human behaviour and fails to
account for the ways in which individuals contribute to cybersecurity resilience. A growing
body of research counters this narrative, positioning users not merely as passive subjects
or points of failure, but as active participants in the configuration, interpretation, and even
creative adaptation of security systems (see e.g., [22]).

These shifts in conceptualizations have significant implications for practice. Despite in-
creasing recognition of users’ agency, the majority of security strategies and interventions
remain grounded in outdated assumptions about user behaviour. For instance, common
strategies, such as security awareness campaigns and user training, often rest on the premise
that increased knowledge directly translates into secure practices or that users possess the
necessary cognitive and technical competencies to implement complex security protocols. In
practice, however, users have frequently reported fatigue and frustration with dealing with
burdensome security tasks, such as managing multiple passwords or navigating inflexible,
repetitive authentication systems. These burdens are unevenly distributed and dispropor-
tionately affect individuals with limited technical literacy and, as a result, contribute to the
existing digital inequalities.

Positioned within the wider cybersecurity discourse, this paper therefore articulates a
human-centred perspective on cybersecurity, offering a critical analysis of prevailing ap-
proaches and outlining key challenges for a more inclusive and contextually grounded cy-
bersecurity agenda.
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4.6.2 State of the Art

Conceptualisation and definition of cybersecurity Cybersecurity is conventionally
defined as the combination of technologies, processes, and practices designed to protect sys-
tems, networks, and data from unauthorised access, damage, or disruption [4]. According
to ISO/IEC 2382-8, computer security entails safeguarding digital resources from both ac-
cidental and intentional threats. Within this framework, the user – whether conceived as
an end-user, an organisation, or members of the broader public who interact with or are
impacted by technology – is typically framed as a behavioural subject whose compliance is
to be shaped through training, policy enforcement, and system design.

Human-centred cybersecurity challenges this framing by adopting a broader, more in-
tegrated, and inclusive conceptualisation. It attends to the full range of human roles and
responsibilities embedded within socio-technical infrastructures [4]. While it builds upon
existing domains such as “usable security” and “human factors in security”, human-centred
cybersecurity moves beyond these to foreground the human not merely as a system component
but as a constitutive force in shaping security dynamics. This shift entails recognising that
users do not simply comply with or violate predefined security norms. Rather, they interpret,
negotiate, and sometimes resist them [24]. For instance, design assumptions premised on indi-
vidual device ownership may not hold in cultural contexts where device sharing is normative
(see e.g., [10] for a case study on South Asian women’s use of mobile phones). This calls for
approaches enabling the design of systems that support shared use and reflect diverse values,
expectations, and socio-cultural constraints, while also recognising the autonomy, dignity,
and gendered sensitivities that may be implicated in such contexts.

Human-centred methodological approaches To date, cybersecurity research remains
methodologically fragmented, with distinct disciplines offering disparate definitions, concep-
tual frameworks, and research priorities [7]. Such fragmentation has contributed to a limited
development of shared understanding across the field. Human-centred cybersecurity ad-
dresses this fragmentation by adopting interpretive and context-sensitive methodologies that
conceptualise security not as a purely technical objective, but as a situated social practice.
This perspective foregrounds the everyday realities in which security is enacted and demands
close attention to how individuals, organisations, states, and other actors perceive risk, nav-
igate uncertainty, and engage with security practices within specific socio-technical contexts.
To this end, human-centred cybersecurity often draws on qualitative and participatory ap-
proaches. Ethnographic studies, in-depth interviews, and participatory design workshops
offer rich insights into the lived experience of security and reveal latent needs and values
that are frequently overlooked by more traditional, technology-centred methods [8, 9]. These
approaches, well established within the field of Human-Computer Interaction (HCI), also
enable a more reciprocal relationship between researchers and participants, supporting the
co-construction of knowledge and the collaborative definition of problems and priorities.

Technical approaches towards human-centred cybersecurity Previous (and much of
the current) technical work aligned with human-centred cybersecurity has primarily focused
on addressing human factors and enhancing usability. Efforts in this area include, among
others, the development of more intuitive authentication interfaces, password management
tools, and context-sensitive notification systems. Emerging research also explores formal
modelling techniques to account for human variability (see e.g., [15]), seeking to bridge the
gap between technical rigour and real-world complexity, offering a basis for more responsive
and inclusive system design.

83



Further, to support the integration of human-centred principles within technical cyber-
security, Grobler et al., [4] propose a framework comprising three interrelated components,
thus offering a structured lens through which to examine the complex interplay between users,
technologies, and security practices. In this respect, User components focus on the ways in-
dividuals interact with and interpret security technologies. For example, in smart home
environments, authentication mechanisms must be sensitive to the presence of multiple users
and reflect varying roles, routines, and levels of access. Usage components encompass the
technical and regulatory structures intended to safeguard users. For example, in IoT-based
health monitoring, includes the implementation of clear and transparent privacy protections.
And finally, Usability components addresses the accessibility and understandability of security
features, aiming to reduce cognitive burden and promote sustained engagement with secure
practices.

4.6.3 Challenges and Future Work

Despite the above and other recent advances, substantial challenges remain in advancing the
human-centred cybersecurity agenda. These challenges are not solely technical in nature;
they extend across conceptual, methodological, and sociocultural domains:

Challenge 1: Continued fragmentation of the field Realising the full potential of
human-centred cybersecurity requires sustained collaboration across domains including com-
puter science, human-computer interaction, psychology, sociology, law, and design. Interdis-
ciplinary dialogue is essential to build shared vocabularies and methodological frameworks
capable of addressing the complexity of socio-technical systems [7]. Without such integration,
efforts to centre human experience in cybersecurity risk remain peripheral and insufficient.

Challenge 2: Narrow conceptualisation of the “user” Much of existing work im-
plicitly privileges the end-user, neglecting other key actors involved in shaping cybersecurity
practices and infrastructures [4]. Developers, system administrators, policy-makers, and se-
curity professionals, even bad actors also enact critical decisions that influence security out-
comes. Human-centred cybersecurity must therefore broaden its analytical scope to account
for these diverse stakeholders and the socio-technical contexts in which security work unfolds.

Challenge 3: Balancing security and usability/user experience Users are often
faced with trade-offs between adhering to secure practices and maintaining efficiency in their
everyday activities. Complex or overly rigid security protocols can lead to user disengage-
ment, circumvention, or non-compliance, ultimately undermining the intended security out-
comes [6]. Future research should therefore prioritise the development of adaptive systems
that integrate security seamlessly into users’ workflows and that respond dynamically to
contextual cues and user intent.

Challenge 4: Inclusive security design Equity and inclusivity remain underdeveloped
dimensions in most cybersecurity frameworks. Conventional models frequently assume a
universal, idealised user, thereby marginalising those whose needs, practices, and constraints
fall outside this narrow conception (see e.g., [10]). Human-centred cybersecurity therefore
demands an intersectional lens-one that makes visible how identity, power, and access shape
the lived experience of security, and that guides the design of systems which are not only
technically robust, but also socially responsive, inclusive, and empowering.
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Challenge 5: Accounting for emotional and psychological dimensions of cyber-
security Security incidents-or even ambiguous signals that suggest potential breaches [22]
- can provoke anxiety, fear, and distrust, contributing to what has been termed ‘cybernoia’.
These effects are particularly acute in intimate settings such as the home, where the presence
of IoT devices renders security breaches more opaque and unsettling. Future systems must
therefore do more than simply prevent breaches or improve usability. They must also com-
municate clearly, support users in making sense of ambiguous or uncertain situations, and
recognise the emotional labour involved in managing (in)security, underlining the importance
of empathetic design, accessible feedback mechanisms, and robust support structures.

Challenge 6: Cybersecurity as a matter of public trust and democratic gover-
nance Security is not solely a technical function; it is also a societal value. Participatory
approaches that involve users, communities, and civil society organisations in the design,
deployment, and oversight of secure systems can enhance transparency, accountability, and
legitimacy. Recasting cybersecurity as a collective, civic responsibility challenges the domi-
nant emphasis on individual responsibility and opens up for more inclusive, resilient forms
of governance; one that foregrounds shared accountability across the entire cybersecurity
ecosystem.

Addressing the above challenges necessitates a critical re-examination of dominant paradigms
and the development of interdisciplinary frameworks that centre on inclusivity, contextual
sensitivity, and shared responsibility.
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4.7.1 Introduction

The evolving role of networked health devices and platforms—collectively referred to as the
Internet of Medical Things (IoMT)—has transformed healthcare delivery. From wearable,
real-time monitors to hospital information systems that automate data management, IoMT
promises greater efficiency, focused care, and reduced costs for providers and patients alike [1].

With these promises come a host of security and privacy concerns. IoMT ecosystems
are highly distributed; each device and service can be a potential target for malicious actors
seeking to compromise confidentiality, integrity, or availability of sensitive patient informa-
tion. Encryption standards, identity and access management (IAM), and blockchain-based
audit trails have been proposed to mitigate risk [2]. However, these measures are insufficient
unless intrusions are detected promptly.

Consequently, intrusion detection systems (IDSs) form a critical layer of defense. Tra-
ditional signature-based IDSs struggle with emerging threats, while anomaly-based IDSs -
particularly those employing machine-learning (ML) or deep-learning (DL) models—offer
adaptive protection by learning what constitutes normal IoMT traffic and flagging deviations
in real time [3]. These data-driven approaches demand realistic, domain-specific datasets for
effective training and validation, which are challenging to obtain because of patient-privacy
regulations.

This paper surveys state-of-the-art anomaly-based IDSs, complementary technologies such
as blockchain, and open challenges that motivate future research in secure IoMT deployment.

4.7.2 State of the Art

Recent years have witnessed a surge of research activity committed to the development of
more advanced security controls for IoMT environments, driven by both the growing sophis-
tication of cyberattacks and the sensitivity of patient health data. Anomaly-based intrusion
detection systems (IDS) have been particularly salient as a promising solution, offering a
more adaptive defense layer compared to traditional signature-based ones. The following is
an overview of prevailing trends and directions of state-of-the-art research.

Machine-Learning and Deep-Learning Approaches Supervised algorithms such as
support-vector machines (SVMs) and random forests classify benign versus malicious traffic,
while DL models—autoencoders, convolutional neural networks (CNNs), and recurrent ar-
chitectures—capture complex dependencies in high-dimensional IoMT data. These models
typically achieve higher detection precision and resilience against zero-day attacks.

Federated Learning and Privacy-Preserving Techniques Because IoMT data are
geographically dispersed, federated learning (FL) allows edge devices to train a global anomaly
detection model without centralising sensitive health records, thereby complying with HIPAA
/ GDPR while reducing data-transfer overhead [4].
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Hybrid and Ensemble IDS Architectures Combining signature- and anomaly-based
detection, often through ensemble learning, yields layered protection and improved false-positive
or true-positive rates. Hybrid frameworks can dynamically adapt to novel attack vectors in
evolving threat landscapes.

Blockchain Integration for Data Integrity Distributed ledgers provide tamper evident
logs of device interactions and security events. When paired with anomaly-based IDS outputs,
blockchain enables immutable forensic trails that strengthen compliance and incident response
capabilities.

4.7.3 Challenges and Future Research Directions

Realistic Dataset Scarcity Strict privacy laws limit open access to clinical data, impeding
the development and benchmarking of anomaly-detection models. Synthetic-data generation
and privacy-preserving data-sharing frameworks (e.g. differential privacy) are promising
avenues to bridge this gap.

Resource-Constrained Devices Many IoMT sensors possess limited processing power
and battery life, constraining IDS complexity. Lightweight models or edge-/fog-computing
offload strategies are essential to maintain detection accuracy without overburdening devices.

Adversarial Robustness ML-based IDSs are vulnerable to adversarial examples that ma-
nipulate input traffic to evade detection. Future work should explore robust training methods,
continuous model updates, and defense-in-depth strategies to mitigate such attacks.

Blockchain Scalability and Interoperability Although blockchain enhances data in-
tegrity, public-ledger consensus protocols may introduce latency and storage overhead. Scal-
able Layer-2 solutions and cross-chain interoperability must mature before large-scale clinical
adoption.

Explainability and Human-in-the-Loop Security Clinicians require transparent de-
cision logic to trust AI-driven IDS alerts. Explainable-AI techniques and intuitive visual
dashboards will facilitate effective human oversight and faster incident response.

4.7.4 Conclusion

Anomaly-based IDSs, blockchain audit trails, and privacy-preserving learning paradigms
jointly constitute a compelling blueprint for secure IoMT ecosystems. Addressing dataset
scarcity, resource constraints, adversarial robustness, and explainability will be pivotal for
translating these advances into practical, clinically viable solutions.

4.7.5 References

[1] S. M. R. Islam, D. Kwak, M. H. Kabir, M. H. Hossain, and K.-S. Kwak, “The Internet
of Things for Health Care: A Comprehensive Survey,” IEEE Access, vol. 3, pp. 678–708,
2015. Available: https://doi.org/10.1109/ACCESS.2015.2437951

[2] X. Zheng, Y. Zhao, H. Li, R. Chen, and D. Zheng, “Blockchain-based verifiable privacy-
preserving data classification protocol for medical data,” Computer Standards & Inter-
faces, vol. 82, artcile, 103605, 2022. Available: https://doi.org/10.1016/j.csi.20
21.103605

89

https://doi.org/10.1109/ACCESS.2015.2437951
https://doi.org/10.1016/j.csi.2021.103605
https://doi.org/10.1016/j.csi.2021.103605


[3] P. Shojaei, E. Vlahu-Gjorgievska, and Y. W. Chow, “Security and privacy of technologies
in health information systems: A systematic literature review,” Computers, vol. 13, no. 2,
article 41, 2024. Available: https://doi.org/10.3390/computers13020041

[4] N. Rieke, J. Hancox, W. Li, F. Milletari, H. R. Roth, S. Albarqouni, et al., “The future of
digital health with federated learning,” NPJ Digital Medicine, vol. 3, no. 1, article 119,
2020. Available: https://doi.org/10.1038/s41746-020-00323-1

90

https://doi.org/10.3390/computers13020041
https://doi.org/10.1038/s41746-020-00323-1


4.8 Wireless Network Security in Aviation: Threats, Chal-
lenges and Future Directions

Authors: Jawad Manzoor1, Waqas Ahmed1

1 University of Galway, Ireland

4.8.1 Introduction

Global air traffic has grown significantly in recent years due to rising demand, which leads to
busier skies and more congested airspace. Additionally, the increasing use of drones in the
commercial sector as well as for surveillance and military purposes, has added a new layer
of complexity to air traffic management. Therefore, ensuring the security and efficiency of
wireless communication networks used in aviation has become increasingly critical. Auto-
matic Dependent Surveillance-Broadcast (ADS-B) is a next-generation aviation technology
that uses GPS to provide accurate information about an aircraft’s position and flight path.
Unlike traditional radar systems, ADS-B enables aircraft to broadcast their location, speed,
and other key details not only to air traffic controllers (ATC) but also to nearby planes.
This real-time data sharing significantly enhances situational awareness and improves flight
safety. It is mandatory for aircraft to have ADS-B in the majority of US and European
controlled airspace. ADS-B has two main parts: ADS-B OUT, which automatically sends
out information about an aircraft’s location, speed, and altitude, and ADS-B IN, which lets
aircraft receive similar information from others nearby. It mostly uses the radio frequencies
of 1090 MHz and 978 MHz for communication. The International Civil Aviation Organiza-
tion (ICAO) manages it globally, the Federal Aviation Administration (FAA) in the United
States, and EUROCONTROL in Europe.

Despite its benefits, ADS-B has several security weaknesses due to its open and unen-
crypted nature. ADS-B messages are broadcast publicly without authentication or encryp-
tion. The system was designed with interoperability and widespread access as priorities rather
than security. This open and unencrypted nature of ADS-B makes it vulnerable to various
air-based and ground-based threats. Eavesdropping is one of the most common threats to
ADS-B messages. Attackers can perform traffic analysis, data harvesting, and correlation
attacks to breach confidentiality. The integrity of ADS-B communication can be compro-
mised by modifying legitimate ADS-B messages. E.g., an attacker can modify the positional
data sent by an aircraft so that it appears to be at false coordinates. Another major threat
to ADS-B is the Denial of Service (DoS) because it makes ADS-B messages unavailable to
authorized entities. An attacker can disrupt the communication between aircraft or ATCs
by using various jamming techniques. ADS-B is also vulnerable to spoofing and message
injection attacks due to a lack of authentication. E.g., an attacker can create a ghost aircraft
that does not exist in reality but appears as an actual entity for ADS-B receivers. These
attacks can confuse and mislead pilots and ATCs.

4.8.2 State of the Art

Aviation security has seen significant advancements, with a growing focus on addressing vul-
nerabilities in the ADS-B system. Recent developments in Machine Learning (ML) and Deep
Learning (DL)-based anomaly detection methods have shown success in detecting malicious
ADS-B messages. Supervised learning methods such as Support Vector Machines (SVM),
Decision Trees, and k-nearest neighbors (KNN) are robust in classification tasks. In [1],
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a classification framework leveraging KNN, logistic regression, and naïve Bayes models is
proposed. Using a dataset generated via the OpenSky API, the proposed techniques are
evaluated against various attack types. The KNN model has been shown to outperform the
others in terms of classification accuracy. DL models like Long Short-Term Memory (LSTM)
networks and Convolutional Neural Networks (CNNs) have also been explored. These mod-
els are particularly good at understanding the temporal and spatial relationships of flight
paths. LSTM has been used for spoofing attack detection by preprocessing ADS-B message
sequences with a sliding window technique [3]. Adversarial learning techniques have also been
used, with one study achieving 98% accuracy in detecting spoofed ADS-B data [7]. Addi-
tionally, CNNs have been employed for aircraft classification based on ADS-B signals. Graph
Neural Networks (GNNs) are also effective in making anomaly detection more context-aware
by treating air traffic as a network of interconnected elements.

Cryptographic methods like encryption, digital signatures, and authentication codes have
also been studied for securing ADS-B communications and ensuring data integrity, authen-
ticity, and confidentiality [11]. Lightweight encryption methods, such as Elliptic Curve Cryp-
tography (ECC) and hybrid cryptographic techniques, are particularly well-suited for ADS-B
systems, which are usually resource-constrained. These methods try to mitigate threats like
message injection, spoofing, and tampering. One notable framework, ADS-Bsec [4], enhances
security through a key management module that facilitates secure message authentication
and integrity verification during flight transitions across air traffic control zones. Another
approach [6] proposes a lightweight symmetric cryptography-based protocol, ensuring mes-
sage integrity and confidentiality.

Some research works have investigated radio frequency fingerprinting techniques that ex-
ploit the distinct transmission characteristics of individual aircraft, such as frequency, signal
strength, and timing variations [8]. These methods help in the identification of legitimate
ADS-B transmitters and distinguish them from spoofed or malicious signals. Other methods
rely on GPS data and multilateration techniques to identify inconsistencies in reported posi-
tions or times, and mitigate threats such as trajectory spoofing and ghost injection attacks.
Kalman filter-based techniques predict and verify aircraft trajectories by analyzing both his-
torical and real-time ADS-B data. They can detect anomalies such as sudden deviations or
unrealistic flight paths by comparing observed positions with expected values [10].

4.8.3 Challenges and Future Work

While the innovations in ADS-B are promising, there are still many challenges in ensuring
real-time processing and minimizing false positives. The non-availability of comprehensive
datasets for ML and DL models’ training is also a challenge. While real-world benign ADS-B
data is readily available through projects like OpenSky, it is hard to collect sufficient labeled
attack data. Keeping in view the current challenges facing ADS-B, the following are some
future research directions.

• Lightweight Privacy-Preserving Broadcasts: Cryptographic methods can provide
privacy and security to ADS-B communications, but they require changes to the sys-
tem’s message structure, which can be challenging to implement across global networks.
Balancing privacy with transparency is required for effective air traffic management.
To this end, techniques like pseudonymization and dynamic ICAO identifiers to protect
sensitive information can be explored. Another promising approach is the lightweight
encryption of certain aircraft data and sharing of decryption keys only with authorized
parties. These methods aim to safeguard privacy without undermining the utility of
ADS-B systems.
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• Distributed Anomaly Detection Networks Instead of relying solely on isolated
ground stations for anomaly detection, future research should focus on collaborative
anomaly detection methods. Techniques such as federated learning and swarm intelli-
gence can be utilized, where multiple nodes share insights without exposing raw data.
This not only improves detection accuracy but also makes it harder for attackers to
exploit vulnerabilities.

• Blockchain for Trust Management Blockchain technology offers more than just a
way to log messages. It could be used for building trust across the aviation ecosystem.
Smart contracts could automate data validation, manage access control, and resolve dis-
putes when conflicting data streams arise. This decentralized approach ensures greater
transparency and reliability.

• Automated Incident Response To stay ahead of cyber threats, the aviation in-
dustry needs automated countermeasures that can respond in real-time. Developing
standardized incident response playbooks tailored to aviation environments could also
help reduce delays in decision-making during cyber incidents.

• Digital Twins for Security Testing Digital twins that are virtual replicas of avia-
tion environments can be invaluable for testing and evaluating potential cyber threats.
These simulations allow researchers to experiment with attack scenarios and assess the
effectiveness of defense mechanisms without risking real-world operations. It’s a safe
and cost-effective method to stay prepared for emerging threats.

• Human Factors in Cybersecurity While technology plays an important role in
detecting and responding to cyber threats, human operators remain at the heart of
aviation security. Understanding the human factors involved such as cognitive load,
alert fatigue and interface design is essential. Better training programs and decision-
support systems can empower ATC personnel and pilots to detect and respond to cyber
threats more effectively.
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Federated learning (FL) is a distributed learning paradigm that allows participating de-
vices to train a common model while keeping their data private. FL redefines the scalability
of artificial intelligence (AI). In particular, ultra-low latency services envisaged by 6G and
beyond networks require fast processing of high volumes of sensitive data, which brings AI
capabilities directly to the edge to overcome the bandwidth limitations and privacy risks of
centralized architectures. As a result, AI and FL are transforming wireless networks into
adaptive and intelligent ecosystems.

This section discusses approaches to decentralized learning, adversarial defense, and pri-
vacy preservation that equip systems to detect threats, optimize resources, and deliver secure
services dynamically. It starts by highlighting that, as 6G aims to integrate AI into next-
generation wireless networks (NGWNs), this deep integration creates new vulnerabilities,
tackling which would require integrated and robust defense mechanisms. It also examines
the two-fold impact of agent-enabled large language models (LLMs) in wireless network-based
cybersecurity. On one hand, LLMs can be used as tools by attackers to reduce the cost and
increase the scalability of attacks; on the other hand, they can also be used as defensive tools,
such as for automatic vulnerability discovery. The remaining part of the section focuses on
FL, covering the potential and the risks to user privacy when deploying FL in NGWNs. It
also reviews several secure and robust FL approaches by (i) highlighting the potential attack
vectors and defense mechanisms, (ii) investigating ways to adapt FL-based intrusion detec-
tion systems to heterogeneous and resource-constrained environments, and (iii) highlighting
the need to develop backdoor defenses that integrate client participation. The section also
addresses vulnerabilities of FL by proposing a deception-based defense mechanism against
poisoning attacks - a proactive defense strategy that aims to mislead attackers, consume their
resources, and hinder their progress. Lastly, the section emphasizes that FL’s multi-round
training and communication cycle can lead to high energy consumption in IoT devices with
limited battery life, reducing participation and increasing device drops; therefore, energy
efficiency stands out as a critical research focus for the success of FL-based IDSs for IoT.

95



When evaluated together, a holistic picture emerges ranging from the wireless ecosystem’s
vision of embedding AI at every layer of the architecture with 6G to the potential of LLMs
to automate the attack-defense cycle; from the privacy, heterogeneity, and energy constraints
of FL-based intrusion detection systems approaches for zero-day detection in IoT, to FL’s
requirements for advanced reliability, cyber deception, and hyperparameter-independent de-
fenses against poisoning and backdoor threats. The common finding is that an FL solution
that keeps data local and is based on distributed intelligence is critical for privacy-compliant
and scalable security; however, it also comes with extensive attack surfaces, variable attack
rates, high energy consumption, and model integrity issues. Therefore, sustainable security
in the future 6G-IoT environment seems to depend on the co-design of energy-efficient FL
algorithms running at the edge, dynamic trust management involving the client, differential
privacy, cyber deception mechanisms, and alignment-check layers that prevent the misuse of
LLMs.
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5.2.1 Introduction

The introduction of a 6G communication network is poised to redefine wireless communi-
cations by not only addressing the problems associated with its predecessor fifth generation
(5G) network, but also by integrating AI methods across multiple network layers. Unlike
5G, 6G does not use AI merely as an add-on, but embeds AI in the architecture seam-
lessly from edge computing nodes and radio access networks to centralized core elements.
For instance, AI models can be deployed in distributed controllers such as RAN intelligent
controllers (RIC) in OpenRAN (O-RAN) architecture that allows the network to perform
security management, network slicing, and enable real-time decision making for resource al-
location. The AI integration also facilitates adaptive user experience, dynamic optimization,
and autonomous network management while significantly increasing system responsiveness
and energy efficiency.

Although the integration of AI brings a lot of improvement in terms of performance, 6G’s
pervasive integration and reliance on AI introduces new vulnerabilities. The attacks concern-
ing AI models in 6G target the very algorithms that underpin the intelligence systems by
potentially compromising the security and reliability of the network. For example, poisoning
attacks can target the neural receivers deployed at the edge by manipulating the training
data. Such attacks can lead the AI models to misclassify the results that might lead to ineffi-
cient resource allocation or missed intrusion detections. The evasion attacks are responsible
for adding subtle adversarial perturbations during the inference of AI model, thus, causing
anomaly detection systems to overlook malicious traffic. Additionally, model inversion attacks
are capable of recovering sensitive training data from AI model while the model extraction
attacks allow adversaries to reconstruct proprietary AI models by querying the output. These
type of attacks expose confidential network information, thus making the network vulnerable.
Furthermore, Trojan attacks complicate the treat landscape concerning AI models through
embedding hidden triggers during the training process. Such triggers are dormant until they
are activated to disrupt critical network functions by inducing unauthorized behavior.

The distributed, virtualized, and open architecture of 6G networks characterized by multi-
access edge computing, real-time edge processing, and loosely coupled components expand the
attack surface considerably. With AI models being the integral part of 6G networks serving
as the backbone for autonomous network operations, an attack could undermine the privacy
of the whole network while degrading performance, disrupting services, and propagating
the attack vulnerability throughout the network. Furthermore, AI model attacks are not
always isolated incidents. The attacks can be systematic threats designed to exploit the
inherent vulnerabilities in 6G architecture. In this paper, we highlight some state-of-the-art
AI model-related attacks, examine their techniques, and discuss potential impacts within the
6G ecosystem. The paper also highlights the critical need for integrated and robust defense
mechanisms to cope with the AI-model attacks.
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5.2.2 State of the Art

With the progression of performance and capability of AI-based architectures, researchers
have tried to integrate the functionalities to 6G communication systems in a seamless manner.
For instance, researchers tried to leverage the distributed learning characteristics for 6G
communication systems to improve the lifetime of the edge devices while reducing the latency
of the systems in compliance to MEC architecture [1]. Some researchers leverage the split
learning framework to not only improve the performance, but also to improve the security
aspect of the 6G network [2]. Nevertheless, with the progression of performance, security
vulnerabilities also increase from AI model perspective as the attackers can recreate the data
through model inversion attacks or manipulate the data through model poisoning attacks,
respectively. Some researchers try to combine the characteristics of generative AI to deal
with model inversion and poisoning attacks in the recent literature [3], but it increases the
latency which does not reflect the real-time characteristics. Below, we have summarized
some state-of-the-art methods that understand and mitigate attacks specifically targeting AI
models deployed in 6G networks.

• Poisoning attacks: Through this attack, the malicious actor adds subtle adversarial
perturbations during inference leading AI systems to produce incorrect outputs. For
instance, the study in [3] performs a model inversion attack to recreate the training
data and then uses it to inject adversarial perturbations into the training process. The
variation seems small, but with each communication round, the performance of the
model decreases significantly. Another study in [4] demonstrated that poisoning attacks
can bias neural network-based channel estimators, causing misallocation of resources in
6G edge nodes.

• Evasion attacks: Evasion attacks are quite similar to the poisoning attacks such that
both these attacks involve adding adversarial perturbations. However, the poisoning
attack targets training process while the evasion attack focuses on the inference process.
The evasion attack leads the AI system to infer incorrect output. The study in [5, 6]
highlighted the effect of evasion attack suggesting that even minor modifications can
cause drastic misclassifications, which can compromise network security or crash the
system for sensitive applications such as healthcare.

• Model extraction attacks: The attack focuses on the recreation of architecture and its
parameters by exploiting the query interface of an AI model. The study in [7, 8] shows
that proprietary AI models can be replicated effectively by iterative querying. Once
the AI models can be recreated, it can be further used for targeted attacks, specifically
in the cases of automated network management systems.

• Model inversion attacks: This type of attack lets the adversaries create sensitive train-
ing data by inverting the model gradients. The study in [8] highlights that the inversion
techniques are capable of exposing private use data and confidential network parame-
ters, especially when the model is deployed at distributed edge nodes.

• Trojan attack: The attack involves camouflaging hidden triggers during the training
phase so that the malicious functionality can be activated with specific input behaviors
that trigger the attack. The study in [5, 9] illustrated that the trojan attack on AI
models in 6G networks can lead to unauthorized control of network slicing mechanism
upon the trigger of specific behavior.

The above-mentioned attacks highlight the systemic vulnerabilities of AI model security
and privacy state that can undermine the entire 6G network. The security challenges are
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Table 5.1: Summary of different attack types and their characteristics and common point of
attack in 6G MEC architecture.

Attack Type Key Characteristics Common Point of Attack in 6G MEC architecture

Poisoning Attack

- Manipulation of training Data
- Can occur as model poisoning (compromising
the training process) or data poisoning (malicious)
samples.

- Targets distributed data aggregation nodes at the edge where
IoT devices supply unverified data.
- Exploits vulnerabilities in local training pipelines.

Evasion Attack
- Introduction of subtle adversarial perturbations
during inference.
- Causes misclassifications in real-time

- Attacks on MEC-based inference services where data transmitted
from edge devices over less secure channels can be perturbed.
- Exploits unreliable channel conditions.

Model Extraction
Attack

- Reconstructs model parameters or internal
architecture by querying model APIs.
- Leaks Intellectual property.

- Edge servers open expose APIs for rapid inference; repeated
querying can be exploited where access controls are less strict.
- Vulnerable in Mobile Edge Computing environments.

Model Inversion
Attack

- Infers sensitive training data from model outputs
- Leads to privacy leakage of user and network data.

- MEC nodes, which aggregate data from diverse sources, may have
insufficient sanitization.
-Attackers exploit inference endpoints at the edge to recover
confidential data.

Trojan Attack
- Embeds hidden triggers during training that remain
dormant until activated.
- Can cause unauthorized behavior upon activation.

- Edge training environments with limited monitoring are prone to
injecting backdoors.
- Once deployed, triggers in edge-based models can be remotely
activated under specific conditions.

Figure 5.1: Key MEC Layers (IoT Devices, Edge Server, Cloud Core) and associated AI
attacks.

further compounded by the virtualized and distributed architecture of 6G, where AI models
are deployed across heterogeneous devices. The inherent interconnectivity and openness
that is promised for the autonomous operation of 6G network enlarges the attack surface,
thus making the robust security countermeasures indispensable. We summarize the key
characteristics of the attack types in Table 5.1. We also provide the specific point of attack
where these vulnerabilities commonly manifest in the distributed architecture of 6G networks.
The aforementioned attacks are also shown in Figure 5.1.

5.2.3 Challenges and Future Work

It has been established well that the deployment of AI models is crucial to the 6G net-
work. However, such a deployment poses security challenges concerning management and
optimization of the communication system. For instance, given the distributed nature of
MEC, edge nodes are vulnerable where the AI models are deployed. The key challenges here
include how to avoid vulnerable data aggregation and poisoning, real-time evasion in resource
constrained environment, exposed inference APIs and model extraction, privacy leakage via
model inversion, and Trojan insertion in decentralized training.

We provide the following future work directions in a brief manner that could provide
promising defense avenues against AI model attacks.
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• End-to-end secure pipelines: Comprehensive pipelines need to be designed that inte-
grate robust data filtering, real-time anomaly detection, and differential privacy mea-
sures to protect training data at the edge.

• Adaptive defense mechanisms: Dynamic model monitoring and continuous adversarial
training need to be implemented in order to detect and respond to evasion attacks
concerning resource-constrained MEC environments.

• Secure API framework: Secure API interfaces for AI model inference and update mech-
anisms need to be developed and standardized that incorporate encryption and rate
limiting. Such measures would deter inversion and extraction attacks.

• Distributed Trojan detection: Design of collaborative frameworks that enable the nodes
in the MEC architecture to detect anomalous behavior while sharing insights on model
performance are needed. Such continuous monitoring would flag the behavior indicative
of Trojan backdoors, thus ensuring consistent model integrity across the network.

We believe that the aforementioned challenges can be addressed by the future directions
that are laid out. The possible research directions would not only ensure the security and
privacy of AI model and users’ data, but also ensure consistent model integrity across the 6G
network.

5.2.4 Conclusion

The integration of AI within 6G networks offers unparalleled advantages in terms of efficiency,
adaptability, and automation. However, this reliance on AI introduces critical security chal-
lenges that threaten network integrity and user privacy.

This study highlights key attack vectors, such as poisoning, evasion, model extraction,
model inversion, and Trojan attacks, which exploit vulnerabilities in AI-based network func-
tions. Given the distributed architecture of 6G and the increasing complexity of cyber threats,
the traditional security measures are insufficient. To mitigate these risks, we propose building
comprehensive security frameworks that incorporate end-to-end encryption, dynamic adver-
sarial training, robust API security, and decentralized anomaly detection. By implementing
these proactive strategies, future 6G networks can ensure the confidentiality, integrity, and
availability of AI-driven operations.

The findings of this study underscore the need for continued research into AI model
security to ensure a secure and resilient 6G ecosystem capable of withstanding evolving cyber
threats.
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5.3.1 Introduction

This White Paper explores the dual-edged nature of large language models (LLMs), esp.
agentic LLMs, in wireless-based cyber attacks. LLMs can not only enhance but fully automate
the cyber attack lifecycle—spanning reconnaissance, initial access, privilege escalation, lateral
movement, maintaining access, and impact on target. While LLMs can be used offensively,
they also offer defensive benefits. Organizations can harness LLMs to detect vulnerabilities,
simulate realistic attack scenarios, and proactively strengthen their security posture.

To make it more concrete, we analyze the Nearest Neighbor attack [3], where an advanced
persistent threat actor (APT) used Wi-Fi networks to bypass multi-factor authentication
(MFA), showing how LLMs could be used to scale and refine similar attacks.

Case-study: nearest neighbor attack. Discovered in 2024, this attack targeted Com-
pany A, whose VPN access was protected by MFA. To bypass it, the attackers first compro-
mised a nearby Company B within wireless range. After breaching Company B’s network,
they accessed a dual-homed device connected to both wired and wireless networks. This
allowed them to infiltrate Company A’s wireless network—both internal and guest Wi-Fi—
which, unlike VPN, lacked MFA protection, granting internal access. Further investigation
revealed they also routed through another nearby Company C to mask their movements. This
attack required significant time, expertise, and infrastructure to penetrate multiple networks
before reaching the final target. While LLMs were not involved, they could be used to auto-
mate key stages, reducing both effort and cost for attackers by automating time-consuming
tedious tasks.

5.3.2 State of the Art

LLMs for offensive security. Attack methodologies outline the phases of an attack. This
study follows the Mandiant Attacker Life Cycle (shown in Figure 5.2), emphasizing iterative
control loops—attackers do not rely on a single exploit, but repeatedly adapt within the tar-
get network to achieve their goal. During the initial Reconnaissance phase, attackers collect
relevant information about their target, e.g., attackers can use passive OSINT methods to
gather target data, typically combining tools like Shodan, SpiderFoot, and leaked credential
databases. Then in the Initial Access phase, access to the target network is gained, e.g., by us-
ing phishing, attacking vulnerable external services, or by using leaked credentials [1]. Later,
the attacker employs Privilege Escalation to gain privileges, e.g., user or service accounts,
and use Lateral Movement techniques to traverse the target network or access additional
connected internal networks. Attackers often use command-and-control (C2) frameworks,
e.g., CobaltStrike or Sliver, to Maintain Persistence in their target network. Finally, during
the Impact upon Target phase, attackers profit from their attack through, e.g., industrial
espionage, denial-of-service, or ransomware attacks.

Using a case study analyzed through this framework, we identify areas where LLMs can
already enhance attacker efficiency:

• Reconnaissance. PassGAN [5] uses deep learning to expand leaked password lists.
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Figure 5.2: Mandiant attacker life cycle, with phases explanation and information about
potential LLM usage.

Recent research indicates that LLMs already contain sufficient background information
and are able perform open-source intelligence (OSINT) work [4].

• Initial Access. Zhou et al. [6] use LLMs to automatically find and exploit vulnerabil-
ities, while Heiding at el. investigate the feasibility of using LLMs for automated spear
phishing [7], highlighting the decreased cost and increased scalability of LLM-based
attacks.

• Lateral Movement & Privilege Escalation. Happe et al. used LLMs in this matter
in both Linux systems [9] and Microsoft Active Directory enterprise networks [8]. Singer
et al. have shown that LLMs are capable of traversing through multiple networks to
achieve their goal [10].

LLMs for defensive security Given enough trust and safe-guards, an LLM could be
employed to perform system and network hardening to proactively prevent attackers from
abusing these vulnerable configurations. While the usage of LLMs decreases the cost of
attacks for adversaries, it also allows defenders to proactively test their own networks. LLMs
can also be utilized to automate configuration hardening and fix software vulnerabilities. [11].

Note Basic cyber-security hygiene will prevent most of traditional and LLM based attacks.
Employing 802.1x together with device-identification as well as strong network segmentation
would have broken this example attack chain.

5.3.3 Challenges and Future Work

LLMs are transforming cybersecurity on both the offensive and defensive fronts. While they
enhance defensive capabilities, they also lower the barrier for attackers, making it essential
to continuously research safeguards and mitigation strategies to stay ahead.

LLMs for offensive security LLMs can streamline “tedious reconnaissance” [12] by au-
tomating OSINT data collection with tools like Shodan and SpiderFoot, reducing manual
effort through function-calling capabilities. Attackers use C2 frameworks like Sliver and
CobaltStrike to maintain persistence, where LLMs can streamline onboarding and automate
tasks. For financial gain or espionage, LLMs can efficiently process stolen data, with lo-
cally deployed models bypassing perimeter detection. In ransomware operations, LLM-driven
chatbots could handle victim negotiations. Fully automated cyberattacks through reasoning
models may become a reality.
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LLMs for defensive security LLMs can be leveraged for network and behavioral analysis,
typically via endpoint detection and response (EDR) tools, enabling earlier attack detection.
With sufficient safeguards, LLMs could also automate system and network hardening to
prevent exploitation. While LLMs lower attack costs for adversaries, they also help defenders
by making penetration testing more accessible, reducing the cost of vulnerability discovery.

Future work The growing risk of LLM-driven attacks underscores the need for robust safe-
guards. Preventing locally-run LLMs from executing unintended malicious actions will be
critical, requiring advancements in model alignment and controlled access to sensitive func-
tions. Beyond individual safeguards, end-to-end defense strategies must evolve in response to
automated threats. LLM-driven detection, response, and mitigation techniques will need to
keep pace with increasingly sophisticated attack automation, ensuring that security measures
remain resilient in this rapidly shifting landscape.
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5.4.1 Introduction

Recent improvements in wireless communication have accelerated the broad use of the inter-
net of things (IoT). In an IoT network, a large number of interconnected electronic devices
and sensors operate in the background to collect user and environmental data. However,
these devices are vulnerable to numerous cyber attacks where attackers can intercept and
analyze sensitive/private data [1]. Moreover, device/data owners may be reluctant to share
their data with a centralized entity because of security concerns such as data privacy and
confidentiality [2]. Next-generation wireless networks (NGWNs), with their ultra-dense de-
ployment, heterogeneous infrastructure, extremely complex and dynamic topology, further
amplify these vulnerabilities, expand the attack surface, and expose IoT devices to more
sophisticated threats.

Federated learning (FL) is a promising solution due to its inherent ability to preserve
data and user privacy for IoT. In the FL approach, data entities/clients can collaborate to
learn a global model jointly without sacrificing data privacy [3]. By enabling decentralized
model training (allowing data to be processed locally on devices) and handling large amounts
of data in real time, the risk of data breaches can be minimized and compliance with privacy
regulations can be achieved simultaneously. In this paper, the potential of FL, the deployment
of FL in the context of IoT networks, and the preservation of privacy based on FL are
discussed.

5.4.2 State of the Art

Machine learning (ML) has been increasingly applied to cope with the dynamic nature of
IoT [4] and meet the heterogeneous requirements of NGWNs [5], [6]. In the ML approach,
data must be transmitted to a centralized entity for preprocessing and model training. This
can significantly increase communication overloads and lead to privacy issues, especially since
it requires sharing confidential data. FL, a disruptive distributed ML framework (as shown
in Figure 5.3) first introduced by Google in 2016, focuses on the centralization of models
rather than raw data, thus reducing the cost of communication and providing a solution to
ensure data privacy (without disclosing their data to others) [7], [8]. With its communication
efficiency and privacy-preserving features, FL has become a natural choice for NGWNs.

Several recent works employed FL methods to overcome or partially solve data privacy
issues in various NGWNs such as sixth generation (6G) networks. Zarandi and Tabassum
proposed a federated double deep Q-learning approach to enhance the learning speed of
IoT/edge devices and minimize their privacy concerns [9]. On the other hand, FL methods
continue to encounter security and privacy challenges [2]. For example, a central server may
be vulnerable to tampering or hacking by personnel, thus model parameters/updates may
be leaked or corrupted. Zhu et al. [2] have proposed a blockchain-based FL framework for
IoT supply chain management. This framework also aims to ensure the data’s resistance to
tampering and to maintain data security in the FL.
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Figure 5.3: Illustration of FL.

5.4.3 Challenges and Future Work

FL is an emerging approach to make communication more efficient, to reduce the compu-
tational load, and to address privacy preservation challenges for IoT devices (agents) and
wireless networks. This offers significant advantages, particularly for the privacy protection
of personal data [10]. Nevertheless, its performance depends on conditions of the wireless
channels and it can still be vulnerable to various cyber threats and privacy issues owing to
the involvement of many end-users [5].

FL can be further enhanced by integrating with blockchain and encryption to provide
stronger protection and significantly improve data privacy, particularly considering privacy
constraints. In addition, the authenticity of model updates can be verified through a robust
mechanism. Differential privacy mechanisms can be applied to local updates, thus protecting
individual contributions to the model and further enhancing privacy. With these advance-
ments, this study concludes with the motivation and insights to leverage FL methods for
data security and privacy in wireless networks.
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5.5.1 Introduction

Federated learning (FL) [1] represents an innovative approach that enables the training of ma-
chine learning models across distributed devices while preserving user privacy. This paradigm
maintains data privacy by processing sensitive information without centralised data collection
at the server, simultaneously reducing communication overhead. The approach has gained
particular importance in domains that require strict data protection, such as healthcare,
finance, and mobile applications, and has become increasingly significant with the implemen-
tation of regulatory frameworks such as the general data protection regulation (GDPR).

FL systems can be categorised based on both network architecture and data partitioning
aspects. Centralised frameworks employ a single server that coordinates model aggregation
and updates, offering faster convergence but introducing single-point-of-failure risks. Decen-
tralised architectures enable peer-to-peer communication without a central server, eliminating
single-point vulnerabilities but increasing communication overhead. Most research prioritises
centralised frameworks for security analysis because defending against threats in decentralised
architectures would require trusting potential attackers—an impractical assumption when any
participant could be malicious.

Most state-of-the-art studies consider a cetralised FL framework for problem formulation
and defense against malicious threats. One of the main reasons is that each user in the FL
network can be a potentially malicious user. Therefore, defending in a decentralised struc-
ture requires trusting in a potential source of the attack. Moreover, to defend against such
attacks in a decentralised architecture, all users should contribute to the defence including
the malicious ones, which can be considered as an unrealistic assumption.

Figure 5.4 illustrates the taxonomy of FL attack vectors, data distribution scenarios and
defence mechanism among state-of-the-art studies.

Due to its distributed architecture, the FL framework is prone to potential vulnerabilities
to various adversarial attacks, including data poisoning and model poisoning, which are clas-
sified based on the adversary’s objectives and implementation methodologies. These security
threats can significantly compromise the accuracy and reliability of the model, potentially
compromising the entire FL infrastructure. The following sections present these threats and
related defensive measures with particular emphasis on centralised FL frameworks.

5.5.2 State of the Art

Attack Vectors in FL

Research into FL security has uncovered a complex landscape of vulnerabilities and protec-
tive measures, with particular relevance to wireless deployments. Integrity attacks targeting
the training process reveal several patterns based on their implementation approaches and
underlying objectives.
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Figure 5.4: FL Security Taxonomy.

Model poisoning attacks Model gradient-level manipulation has proven significantly
harmful to FL networks by directly altering model weights [2]. In model poisoning, ma-
licious participants intentionally modify their local weights before sharing them, allowing
attackers to influence model with subtle adjustments. Zhou et al. [3] refined these meth-
ods by developing covert approaches that target specific network components, substantially
complicating detection through traditional comparison methods.

Data poisoning attacks While comparatively less efficient, training data poisoning re-
mains a threat to wireless FL environments. Researchers categorise these into preserved and
flipped label approaches. The former introduces carefully crafted forged data without chang-
ing classifications, often employing noise or synthetic data generation techniques. The latter
directly transforms classifications through fixed or adaptive relabeling strategies. Recent ad-
vances include distance-aware techniques that measure feature space relationships between
categories to optimise effectiveness while reducing detection probability.

Studies comparing attack methodologies commonly demonstrate that direct parameter
manipulation achieves higher success rates with significantly fewer compromised participants
than data poisoning approaches, with model poisoning requiring approximately 5% of the
participant infiltration needed for a comparable impact of data poisoning - a critical efficiency
consideration in resource-constrained wireless environments [4].

Defense Mechanisms

Recent protective countermeasures generally follow three design strategies: contribution anal-
ysis, resilient aggregation techniques, and verification protocols.

Gradient-based contribution analysis This approach employs mathematical distance
metrics to identify suspicious contributions. Techniques such as cosine similarity [5] and
influence functions [4] measure the deviation of user updates from expected patterns. These
methods are particularly effective against model poisoning attacks as they directly analyse
gradient patterns, enabling early detection of manipulated model weights before they can
significantly influence the global model.

Byzantine resilient methods These techniques modify traditional weight averaging through
approaches such as Statistical filtering to remove outliers. Byzantine-resilient aggregation [6]
have demonstrated effectiveness against targeted attacks while maintaining model perfor-
mance on legitimate tasks. These methods demonstrate superior performance against tar-
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geted model poisoning attacks, though they require more computational resources than other
defences.

Robust aggregation methods These techniques protect against both model and data
poisoning by modifying the traditional averaging process to minimise the impact of malicious
updates. Krum [7] selects updates with minimal Euclidean distance to others, effectively elim-
inating outliers. Trimmed Mean removes extreme values for each parameter before averaging,
while coordinate-wise median aggregation replaces means with medians, offering Byzantine
resistance with reasonable convergence guarantees. While effective against both model and
data poisoning attacks, these methods show particular strength against data poisoning at-
tacks by minimising the influence of outliers that typically result from poisoned data, all
while maintaining reasonable convergence properties.

In wireless FL environments, naturally heterogeneous data distributions create additional
detection challenges, as benign model variations often resemble malicious modifications. This
fundamental conflict between privacy preservation and security requires innovative frame-
works that address both concerns without requiring access to sensitive local information or
imposing excessive computational demands on resource-limited devices.

5.5.3 Challenges and Future Work

Implementing robust security in wireless FL frameworks faces several critical challenges that
require innovative research approaches. The computational demands of current defence mech-
anisms often exceed the capabilities of resource-constrained wireless devices, creating a need
for lightweight security protocols that maintain effectiveness while reducing computation re-
quirements.

Resource constraints The computational demands of current defense mechanisms of-
ten exceed the capabilities of resource-constrained wireless devices. This situation makes
lightweight security protocols that maintain effectiveness while reducing processing require-
ments vital. Future research should focus on developing efficient anomaly detection algo-
rithms specifically designed for low-power devices and investigating hardware-accelerated
security mechanisms compatible with edge computing platforms.

Non-IID data challenges Non-uniform data distribution further complicates detection
mechanisms, as legitimate variations in local models often resemble malicious manipulations.
Therefore, non-IID data distributions prove to be a promising topic that requires develop-
ing more sophisticated anomaly detection techniques to distinguish between natural model
divergence and adversarial manipulation in these heterogeneous environments.

Addressing these challenges requires interdisciplinary collaboration to develop secure and
privacy-preserving federated learning systems for next-generation wireless intelligent appli-
cations.
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5.6.1 Introduction

The deployment of billions of interconnected IoT devices facilitates enhanced monitoring,
real-time analytics, and unprecedented operational efficiencies. However, this expanding con-
nectivity landscape has simultaneously broadened the attack surface, making IoT networks
highly susceptible to new threats, particularly zero-day attacks [1]. Zero-day attacks exploit
previously unknown vulnerabilities, rendering traditional signature-based intrusion detection
systems (IDS) inadequate due to their reliance on known threat signatures. Therefore, inno-
vative detection techniques are urgently needed.

Federated learning (FL) has emerged as a promising solution for IoT applications, enabling
collaborative model training across distributed IoT devices while preserving user privacy.
This makes FL particularly suited for IDS in highly distributed IoT networks. To robustly
defend against adversarial threats in federated IoT environments, various defense techniques
(e.g., robust aggregation, anomaly detection, cryptographic protocols) have been proposed.
Nonetheless, these solutions are often not effective in highly heterogeneous IoT environments.

Motivated by this critical gap, we examine how recent advancements in adversarial ma-
chine learning and cryptographic techniques can be leveraged to create robust FL-based IDS
solutions. We critically analyze existing federated IDS approaches, zero-day detection meth-
ods, and adversarial resilience strategies, evaluating their applicability to IoT systems char-
acterized by diverse device capabilities, limited computational resources, and strict privacy
regulations.

5.6.2 State of the Art

Botnets and malware represent significant threats to IoT networks due to their ability to
exploit vulnerabilities en masse. Diverse research [1, 3, 5, 6, 8] have extensively explored FL-
based approaches for their detection. We provide a classification of state-of-the-art papers
proposing FL-based IDS for IoT in Table 5.2.

Metwaly and Elhenawy [4] proposed FL-based solutions that incorporate privacy protec-
tion while defending against botnet. Rawat and Kumar [11] explored blockchain-enabled FL
frameworks specifically designed for malware detection, demonstrating blockchain’s potential
for ensuring transparent, secure aggregation of federated models, thereby preventing mali-
cious tampering or poisoning attacks during training phases. He et al. [10] demonstrated
blockchain-powered FL with conditional generative adversarial networks (GANs) to adddress
data scarcity and imbalance issues. Although blockchain-enhanced aggregation protocols
have shown promise for secure and transparent aggregation, they incur high computational
overhead and require significant adaptations.

The work in [7] used differential privacy (DP) and advanced federated aggregation meth-
ods to address privacy and heterogeneity challenges. DP-based mechanisms and secure multi-
party computation have been explored extensively to bolster privacy protections. DP mecha-
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Table 5.2: State-of-the-art papers proposing FL-based IDS for IoT.

Attack Type IoT Environment Data Handling Papers

Zero-day, Botnet, General IDS General IoT Non-IID, IID [1], [4]
General IDS, Malware General IoT, Industrial IoT Non-IID [7]
Botnet General IoT Non-IID, IID [3]
General IDS, Malware General IoT, UAV-based IoT Non-IID, IID [10]
General IDS General IoT Non-IID [8]
General IDS General IoT, 5G Networks Non-IID [5]
General IDS General IoT Non-IID [7]

nisms though inherently introduce noise, potentially reducing detection accuracy—especially
against subtle, highly adaptive zero-day threats—highlighting the persistent challenge of
balancing privacy preservation and security performance in federated IoT environments. Al-
though methods such as DP, clustering-based aggregation, and data augmentation via GANs
have been proposed to address heterogeneity, they are often computationally intensive, re-
ducing their viability in IoT environments.

FL has also been explored as an adaptive mechanism to counter zero day attacks. The
work by [3] emphasized FL’s potential to identify anomalous patterns indicative of zero-
day vulnerabilities by collaboratively analyzing heterogeneous traffic data across diverse IoT
devices. Research result by [2] extensively demonstrated federated architectures’ potential
for proactive threat detection by leveraging aggregated intelligence from diverse IoT devices.
For zero-day attack scenarios, effective detection fundamentally relies on accurate anomaly
identification against normal traffic baselines, which becomes extremely challenging under
non-IID conditions. The failure of these techniques to effectively mitigate zero-day exploits
points to the fact that more research is needed.

5.6.3 Challenges and Future Direction

Below, we list some of the remaining open challenges in FL-based IDS for IoT.

Vulnerabilities in federated aggregation mechanisms One of the foremost challenges
identified in federated IoT security contexts revolves around the inherent vulnerabilities
within federated aggregation mechanisms. Adversarial participants may exploit aggrega-
tion protocols through malicious model updates or gradient poisoning attacks, significantly
degrading the integrity of global detection models. Additionally, studies have identified the
ineffectiveness of standard aggregation mechanisms against collusion-based attacks, where
multiple adversaries synchronize their poisoned updates to bypass simple anomaly-detection
filters. Thus, balancing security, computational efficiency, and scalability within federated
aggregation mechanisms remains an open challenge.

Ensuring privacy and confidentiality under adversarial conditions Privacy preser-
vation and confidentiality form foundational attributes of federated learning frameworks.
However, adversaries increasingly leverage sophisticated inference attacks targeting feder-
ated models to infer sensitive information from aggregated model parameters. This problem
becomes more acute under adversarial conditions associated with zero-day attacks, as anoma-
lous behavior detection frequently requires more extensive visibility into traffic patterns and
device states, inherently conflicting with stringent privacy constraints.

114



Data heterogeneity and non-IID distribution across IoT devices Another ma-
jor challenge is the prevalent data heterogeneity and Non-IID nature of IoT datasets dis-
tributed across edge devices. IoT devices typically generate highly heterogeneous data dis-
tributions owing to their varying functionalities, sensor modalities, geographic locations, and
user-specific usage patterns. Such heterogeneity profoundly impacts the federated training
process, exacerbating model convergence difficulties and resulting in uneven detection perfor-
mance across devices. For zero-day attack scenarios, effective detection fundamentally relies
on accurate anomaly identification against normal traffic baselines, which becomes extremely
challenging under non-IID conditions.

Resource constraints and limited computational capabilities The resource con-
strained nature of IoT devices introduces a fundamental barrier for implementing sophis-
ticated adversarial defense techniques. IoT devices typically possess limited computational
power, memory, storage, and battery life, rendering conventional deep learning models and
computationally heavy defensive algorithms unsuitable for direct deployment. Popoola et
al. [3] specifically highlighted that memory-efficient algorithms like LSTM-autoencoders, al-
though promising, must further balance computational efficiency and accuracy, particularly
when defending against unpredictable zero-day threats. Consequently, developing lightweight
yet robust federated learning-based adversarial defenses capable of real-time, resource-efficient
zero-day detection remains a challenge.

Future research directions A critical direction for future research involves developing
more sophisticated federated aggregation methods capable of effectively thwarting adversar-
ial threats, particularly those involving malicious model updates and parameter poisoning.
Future methods must integrate advanced anomaly detection, blockchain transparency, and
robust reputation-based scoring mechanisms to detect and neutralize threats proactively and
accurately. Future research should also explicitly integrate adaptive context-aware mecha-
nisms and meta-learning strategies to handle Non-IID data distributions effectively. Tech-
niques that combine federated learning with meta-learning paradigms (e.g., few-shot learning)
promise significant potential for rapidly adapting detection models to unseen zero-day attacks
by leveraging limited anomaly samples across heterogeneous IoT devices. These methods can
dynamically adjust models, improve generalization capabilities, and offer more effective pro-
tection against unknown and evolving adversarial threats.
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5.7.1 Introduction

Federated learning (FL) enables multiple participants to collaboratively train a global model
while preserving data confidentiality. A server coordinates training by broadcasting an initial
model, which clients refine locally before sending updates for aggregation. This iterative
process continues until convergence [1].

However, studies have shown that FL is vulnerable to security breaches caused by ma-
licious participants. Adversarial clients may train local models on corrupted data or alter
model parameters, compromising the global model. These attacks fall into two categories:
untargeted, which degrade overall accuracy, and targeted, which cause misclassification of
specific inputs. A specific form of targeted attacks is the backdoor attack, where an adversary
manipulates its local model to induce specific labels when a trigger is present. Since backdoor
attacks do not affect clean inputs, they are difficult to detect and mitigate.

FL also faces the well-known non-Identical and independently distributed (Non-IID) data
heterogeneity challenge. Differences in data distribution, quality, and quantity among par-
ticipants hinder model convergence to a global minimum. Moreover, data heterogeneity
introduces fairness issues, as the global model often favors overrepresented groups, discour-
aging client participation in FL. Beyond impacting model performance and fairness, data
heterogeneity also increases FL’s vulnerability to security threats. When client data distri-
butions vary significantly, it becomes harder to detect malicious behavior, making FL more
susceptible to adversarial attacks.

5.7.2 State of the Art

Defenses against backdoor attacks in FL are mainly classified into two: (i) pre-aggregation
defenses that focus on identifying malicious clients and prohibiting their participation in the
global model aggregation, and (ii) in/post-aggregation methods, which mitigate the effect of
backdoors in the aggregated global model.

Pre-aggregation defenses Pre-aggregation defenses adopt two approaches to distinguish
between benign and malicious models: robust aggregation and detection and isolation.

Robust aggregation Robust aggregation approach is designed to maintain the integrity
and performance of the global model despite the presence of adversarial participants. Blan-
chard et al. [2] introduced Krum and Multi-Krum, non-linear aggregation strategies that uti-
lize Euclidean distances to select local models. They identify the local models most similar
to the majority to form the basis of the global model. Another defense FoolsGold [3] operates
on the assumption that malicious local models will exhibit similarity to each other, whereas
benign clients will present more diverse model updates. Other defenses like FLTrust [4] utilize
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Table 5.3: Comparison of Backdoor Attack Defense Methods in FL.

Defense Strategy Side Limitation

Krum/Multi-Krum [2] Euclidean Distance Server Vulnerable if malicious majority
FoolsGold [3] Cosine Similarity Server Ineffective against diverse clients
FLTrust [4] Auxiliary dataset Server Requires auxiliary dataset
FLDetector [5] Cauchy mean theorem Server Partial client participation
FedRecover [6] Use historical updates Server High storage & computational cost
VAE-based Detection [7] Use reconstruction loss Server Complex training
FedCVAE [8] Use reconstruction loss Server Complex training
Snowball [9] Clustering and VAE Server Sensitivity to clustering accuracy
Gradient Pruning [10] Pruning specific neurons Server Reduced benign task accuracy
Differential Privacy [11] Add noise to reduce backdoor Server Security and performance trade-off
FLAME [12] Clustering, clipping, noising Server Sensitivity to hyperparameters
FLIP [13] Adversarial training Client Degradation of global accuracy
Crowd-Guard [14] Client Feedback Both Requirement of TEE

an auxiliary dataset to train a reference model at the server side, which serves as a benchmark
to evaluate the integrity of local models submitted by clients.

Detection and isolation Detection and isolation approach employs techniques to identify
anomalous local models with the aim of isolating malicious contributions. The server in
FLDetector [5] predicts model updates using the Cauchy mean value theorem. Clients whose
updates deviate from these preditions receive a higher suspicion score and are classified as
malicious. Similarly, FedRecover [6] maintains a copy of historical updates to produce a clean
global model in the event of attacks. Li et al. [7] used a variational auto-encoder (VAE) to
learn the pattern of the parameters of benign models trained in a centralized fashion. The
trained VAE serves as a malicious client detector as the VAE outputted larger reconstruction
losses for the unlearned patterns that are likely to be malicious. FedCVAE [8] reduces client
updates to low-dimensional surrogate vectors and computes their geometric median. A CVAE
is then used to compute reconstruction errors for the processed surrogate vectors, and local
models with reconstruction errors above the mean are deemed adversarial and eliminated. A
recent defense, Snowball [9], incorporates K-means clustering with VAE to identify benign
clients.

In/post-aggregation defenses In/post-aggregation defenses typically commence during
the aggregation of local models into a single global model. The server employs techniques such
as gradient clipping to reduce the impact of the backdoor embedded in the poisoned models or
gradient pruning, which deletes backdoor neurons after the aggregation phase. Wu et al. [10]
proposed a gradient pruning method that identifies and erases neurons that are only triggered
by backdoors. Naseri et al. [11] utilized differential privacy (DP) to effectively inhibit the
effects of backdoors. Some studies have also proposed hybrid approaches that combines both
pre- and post-aggregation strategies. In [12], Nguyen et al. developed FLAME, a three-part
backdoor detector comprising clustering, clipping, and noising components that effectively
defends against backdoor attacks in FL.

Client-side defenses Recent work [13, 14] proposed client-side adversarial training and
utilizing client feedback to enhance the robustness of FL in the presence of adversaries, re-
sulting in significant reduction in backdoor attack accuracy. Table 5.3 provides a comparative
summary of the backdoor defenses.
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5.7.3 Challenges and Future Work

Detecting backdoors in FL scenarios where participants possess highly non-IID data is not
trivial. We highlight key challenges and directions for future research.

Client integration to reinforce server side defenses Current defenses mainly focus on
mitigating attacks from the server side. Only a few approaches (FLIP [13], CrowdGuard [14])
integrate clients to enable defending the FL landscape. As these works show promising
results, exploring more defense techniques that leverage client participation can be a valuable
direction for future work.

Fixed threshold for adversaries Robust aggregation methods (as Krum [2]) are inher-
ently designed to withstand a fixed percentage of malicious clients. As such, their effectiveness
degrades significantly when the number of adversaries exceeds their designed tolerance. This
necessitate the design of defenses that can tolerate flexible ratio of malicious candidates. Fu-
ture work should focus on designing defenses that can flexibly handle varying proportion of
adversaries.

Reliance on data assumptions and auxiliary data Some defenses depend on strong
assumptions regarding data distribution or require access to an auxiliary dataset, limiting
their practicality. For example, FoolsGold [3] performs well in non-IID settings but struggles
under IID, while FLTrust [4] relies on the server possessing a trusted validation dataset. Real-
world data is highly heterogeneous, and such assumptions may not hold. Future research
should focus on designing methods that generalize across different data distributions and
eliminate dependency on validation datasets. A promising direction is using high-quality
synthetic data generated from foundation models to homogenize the data distribution of
clients.

Expensive computational requirements Defenses that depend on historical updates
and VAEs impose significant computational and communication overhead. This limits the
deployment capability of these defenses in edge devices which usually operate in resource
constrained environments.

Effects of hyperparameters The robustness of many existing defenses depend on specific
choice of hyperparameters, such as the learning rate or backdoor target of the learning task.
For example, incorporating DP without careful consideration can significantly deteriorate
the global model accuracy. Similarly, FLAME [12] tends to misclassify benign models under
highly non-IID scenarios and is sensitive to hyperparameters such as low learning rates.
Recent approaches like Snowball [9], while resistant to attacks, results in reduced accuracy
in cross-silo settings, and exhibit sensitivity to the choice of backdoor target. Thus, there
is a critical need to develop hyperparameter-agnostic defense mechanisms to enhance the
robustness of FL in the presence of adversaries.
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5.8.1 Introduction

Artificial intelligence (AI) has become a cornerstone of modern technological advancement,
driven by the proliferation of cloud-based applications and the ubiquitous presence of con-
nected devices such as smartphones and tablets. These devices continuously generate vast
amounts of data, fueling machine learning (ML) model training. However, traditional ML
paradigms rely on centralized data aggregation, raising critical privacy and security concerns
due to the risks of data leakage, surveillance, and single points of failure.

Federated learning (FL) has emerged as a decentralized paradigm that enables collabo-
rative model training while preserving user data privacy. By retaining data on local devices
and sharing only model updates, FL mitigates privacy issues linked to centralization. Nev-
ertheless, this distributed nature introduces new security challenges, particularly in the form
of poisoning attacks, where adversarial clients attempt to corrupt the global model either
through manipulated training data (data poisoning) or by crafting harmful local model up-
dates (model poisoning).

To defend against these threats, existing approaches can be categorized into:

1. Model analysis: Detects anomalous behavior in local models using statistical or learning-
based techniques [1, 2].

2. Byzantine-robust aggregation: Adjusts the aggregation strategy (e.g., clipping, robust
mean, or coordinate-wise median) to reduce the impact of outliers or malicious gradi-
ents [3, 4].

3. Verification-based defense: Verifies the integrity of updates via trusted execution envi-
ronments (TEEs) or challenge-response tests [5, 6].

Although effective to some extent, these solutions are mostly reactive and aim to neutralize
attacks without imposing significant cost on adversaries. This motivates the use of cyber
deception, a proactive defense strategy adapted from cybersecurity, which aims to mislead
attackers, consume their resources, and hinder their progress.

In this work, we propose a secure and adaptive FL framework that incorporates cyber
deception alongside traditional defenses to enhance robustness against poisoning attacks. The
framework (illustrated in Figure 5.5) includes:

• A trust management strategy based on the Dirichlet distribution to evaluate client
behavior over time. Each client’s trust score is dynamically updated according to
the consistency and reliability of its model updates. The distribution’s parameters are
adjusted as new evidence accumulates, allowing the system to identify and down-weight
untrustworthy participants.

• A privacy-preserving and robust aggregation module that integrates differen-
tial privacy (to limit information leakage during aggregation) and Byzantine-resilient
techniques (to suppress outliers or malicious updates), both executed server-side to
safeguard the global model integrity.
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Figure 5.5: Overview of the proposed secure and deceptive FL framework.

• A novel global decoy model (GDM) that actively deceives attackers by simulating
a realistic but isolated FL environment. Malicious clients identified or suspected via
the trust mechanism are redirected to interact exclusively with the GDM.

The GDM is trained using both genuine and adversarial updates, but remains isolated
from the real global model (RGM). It sends plausible but strategically manipulated gradients
back to attackers to mislead their optimization efforts. By simulating model responses and
preserving training plausibility, the GDM avoids detection while wasting attacker resources.
Mechanisms are also in place to ensure benign clients are never exposed to the GDM, thereby
maintaining service integrity.

By synergizing trust evaluation, robust aggregation, and adversarial deception, our frame-
work offers a multi-layered defense that not only protects against poisoning but also strate-
gically deters and drains malicious actors.

5.8.2 State of the Art

Existing defenses against poisoning in FL typically fall into three categories: model analysis,
Byzantine-resilient aggregation, and verification-based methods.

Model analysis Model analysis approaches seek to detect poisoned models using statistical
distance metrics or anomaly detection. For example, updates that deviate significantly from
the expected gradient distribution may be flagged as suspicious [1].

Byzantine-resilient aggregation Byzantine-resilient aggregation techniques – such as
coordinate-wise median, Krum, and norm bounding—aim to suppress the impact of outliers
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or adversarial gradients. Differential privacy is often combined with these methods to protect
against information leakage, although it may reduce model utility [4].

Verification-based defenses Verification-based defenses leverage secure hardware (e.g.,
Intel SGX) or adversarial challenge-response schemes to validate update authenticity before
aggregation [6].

However, these methods are generally passive, focusing on defense without retaliation.
Deception-based strategies go further by actively engaging and misleading attackers. For
instance, feeding adversaries with misleading model feedback or isolating them into fake
training loops can drastically reduce their attack efficacy.

Our proposed framework builds on this insight by combining these defenses with an
adaptive decoy mechanism that redirects and misguides malicious clients, turning their efforts
against them while preserving model quality.

5.8.3 Challenges and Future Work

While our framework presents a promising direction for defending FL against poisoning,
several challenges remain open:

• Adaptive adversaries: Attackers may evolve strategies to detect decoy environments.
Future research could explore adversarial training to simulate and preempt such behav-
iors.

• Decoy realism: Ensuring the GDM is indistinguishable from the real model is critical.
Further work is needed to refine gradient shaping and interaction timing to preserve
the illusion.

• Benign client safety: A key concern is ensuring that no benign client mistakenly
interacts with the GDM. Strict segregation protocols and dynamic whitelisting mecha-
nisms must be maintained.

• Scalability and efficiency: Training and maintaining the GDM introduces compu-
tational overhead. Exploring lightweight deception strategies or resource-aware GDM
variants could enhance deployability.

• Beyond poisoning: Although this work focuses on poisoning attacks, extending de-
ception to defend against inference or model inversion attacks could further harden FL
systems.

• Game-theoretic integration: Modeling the interaction between defenders and at-
tackers as a dynamic game could help predict and counter adversarial adaptations,
paving the way for more strategic and robust FL security mechanisms.

By addressing these challenges, future research can advance the development of intelligent,
deceptive, and cost-efficient defenses for FL ecosystems operating in adversarial environments.
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5.9.1 Introduction

The sixth generation (6G) technology will revolutionize internet of things (IoT) applica-
tions by unfolding a fully autonomous, immersive ecosystem and enabling real-time decision-
making, transforming industries and daily life like never before. 6G is set to dramatically
increase the scale and efficiency of IoT applications, enabling seamless connectivity among
billions of smart devices across various domains, including industrial automation, smart cities,
healthcare, and smart homes. By 2030, the number of connected IoT devices is expected to
exceed 40 billion worldwide [1].

IoT applications are inherently vulnerable to various security threats due to its large-scale
deployment, resource-constrained devices, and diverse communication protocols. IoT applica-
tions face critical security challenges such as unauthorized access, data breaches, distributed
denial-of-service (DDoS) attacks, and malware infections. Many IoT devices lack robust au-
thentication mechanisms and are often deployed with default credentials, making them easy
targets for attackers. Additionally, constrained computing resources limit the implementation
of strong cryptographic measures, leaving communication channels susceptible to eavesdrop-
ping and data manipulation. To mitigate these risks, machine learning (ML)-based intrusion
detection systems (IDS) are proposed to monitor network traffic, detect anomalies, and re-
spond to potential threats in real time. However, conventional centralized ML approaches
encounter fundamental constraints due to their reliance on data centralization. The necessity
of aggregating data in a central location raises critical concerns regarding privacy, security,
and latency.

Federated learning (FL) has emerged as a promising alternative to centralized ML, provid-
ing a decentralized approach that aligns well with the distributed and heterogeneous charac-
teristics of IDS in IoT applications. In FL, the training process is carried out across multiple
IoT devices, enabling each device to update a local model independently using its own data.
These locally trained models are then aggregated at a central server to construct a global
model, eliminating the need to share raw data among IoT devices. This framework effec-
tively mitigates privacy and security concerns by ensuring data remains localized while also
significantly reducing the communication overhead associated with data transmission, mak-
ing it an attractive solution for IoT applications. FL approaches also support compliance
with regulatory frameworks such as the general data protection regulation (GDPR), which
impose strict restrictions on data transfer and storage. By minimizing the need for raw data
transmission, FL serves not only as a technological advancements but also as a compliance
enabler, ensuring adherence to data privacy regulations [2].

Energy efficiency is a crucial consideration in IoT applications, where numerous devices
rely on constrained power sources, such as batteries or energy-harvesting mechanisms. The
iterative process of FL, which requires multiple rounds of local training and communication,
can impose a significant energy burden on these IoT devices, leading to rapid depletion of
their power reserves. This challenge not only restricts the participation of energy-constrained
IoT devices but also increases the likelihood of device dropout, potentially disrupting the FL
process and diminishing the representativeness of the global model.
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5.9.2 State of the Art

FL-based IDS for IoT applications play a crucial role in detecting security threats; how-
ever, their implementation on resource-constrained IoT devices poses significant challenges
in energy efficiency. Most IoT devices operate on battery power, which limits their ability
to perform continuous IDS. Conventional ML-based IDS approaches shift training to remote
servers, introducing high latency and privacy concerns, making FL-based approaches more
appealing.

Energy-Intensive Processes in FL-based IDS

FL mitigates privacy risks by enabling distributed training across IoT devices, however, its
iterative nature results in frequent local model training and communication rounds, leading
to excessive energy consumption. The primary contributors to energy overhead in FL-based
IDS include: local model training, communication costs and security overhead. Below, we
provide more details on each of these contributors.

Local model training Training ML models on low-power IoT devices requires substantial
CPU and memory resources, leading to high processing power consumption and accelerated
battery depletion. The complexity and size of the ML models deployed on IoT devices are ma-
jor contributors to energy drain. More complex models such as convolutional neural networks
(CNNs) require longer processing times, increasing energy consumption, and higher memory
demands, further draining power due to frequent memory accesses and data transfers [3].

Furthermore, the characteristics of the local training dataset, such as its size, distribution,
dimensionality, and preprocessing requirements, are critical determinants of energy demand
in FL for IoT. Effective data-aware training strategies, such as adaptive batch sizing, sample
selection, and dimensionality reduction, can help mitigate energy costs while maintaining
FL-based IDS performance.

Communication costs FL requires frequent exchanges of model updates between IoT de-
vices and the remote server to aggregate the global model. Therefore, the frequency and
size of communication between IoT devices and the central aggregator significantly impact
energy consumption. Additionally, the greater the number of IoT devices in an FL system,
the more training and aggregation rounds occur, increasing communication overhead. Higher
bandwidth demand necessitates greater transmission power, leading to higher energy con-
sumption. Moreover, in wide-area IoT networks (e.g., smart cities, industrial IoT), devices
located far from edge servers or aggregators require stronger transmission signals, further
intensifying energy usage. Finally, security mechanisms to securely share the model updates
(e.g., gradients or weights) can introduce additional energy overhead. Techniques such as
differential privacy, secure aggregation, and encryption protocols demand extra computation
and often increase the payload size of updates. Although they improve data protection and
regulatory compliance, these techniques can exacerbate the energy constraints of already
limited devices.

Security overhead To protect sensitive model updates, privacy-preserving techniques such
as differential privacy, secure aggregation, and encryption are often employed. While these
mechanisms enhance data protection and regulatory compliance, they introduce additional
computational and communication overhead, which further strains energy-limited devices.

Among these factors, the most critical parameters influencing energy consumption in FL-
based IDS are the model complexity, communication frequency, and use of privacy-preserving
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mechanisms. Moreover, many of these parameters are interdependent; for example, increasing
local training to reduce communication may shift the energy burden to computation. Sim-
ilarly, applying differential privacy may make the model more secure, but it increases both
computation and communication costs. A comprehensive optimization strategy is therefore
needed to balance these trade-offs effectively.

Optimization Techniques

To address the energy challenges of FL-based IDS, researchers have proposed various opti-
mization techniques. Compression techniques such as pruning, quantization, and knowledge
distillation effectively reduce the complexity and size of ML models, enabling execution on
resource-constrained IoT devices. Pruning eliminates redundant parameters and connections,
reducing model size and communication overhead in FL. Further, quantization can be ap-
plied to reduce the precision of model parameters, decreasing the memory and processing
requirements. Thus, it lowers computation costs during local training on IoT devices. Addi-
tionally, knowledge distillation extracts essential features from a large global model to create
a smaller, more efficient model suitable for IoT devices [3, 4].

High communication costs pose a significant challenge for many FL deployments, partic-
ularly when training large deep neural networks (DNNs), where extensive model updates are
exchanged between clients and the aggregator. To this end, numerous studies have focused
on enhancing communication efficiency in FL by reducing transmission frequency. Tech-
niques such as gradient sparsification, which decreases the number of model gradients, sparse
communication, where only essential local updates are transmitted, and Federated Dropout,
which selectively updates a subset of parameters, help minimize energy consumption during
the training process [5]. Additionally, normalization techniques such as gradient clipping,
which limits the range of gradient values to prevent instability, and sign-based normalization
(SignSGD), which reduces data precision by transmitting only the sign of gradients instead
of full floating-point values, can be applied to encode and compress model updates.

Lightweight and TinyML Approaches

Recent research efforts have focused on Tiny Machine Learning (TinyML), which enables
ultra-low-power and memory-limited IoT devices, such as microcontroller units (i.e., MCUs)
to perform optimized ML models [6]. By integrating TinyML, IoT devices can locally pro-
cess data and execute ML-based IDS while minimizing energy consumption and reducing
reliance on cloud computing. The ability to analyze data at the extreme edge enhances real-
time decision-making, enabling IoT devices to detect security threats autonomously without
excessive power usage or communication overhead.

Industry leaders and researchers have recognized the potential of TinyML, leading to the
development of frameworks such as TensorFlow Lite, embedded learning library (ELL) by
Microsoft, ARM-NN, and STM32Cube-AI. These tools are designed to optimize ML models
for deployment on microcontrollers, allowing IoT devices to run IDS locally while maintaining
energy efficiency. Research evaluating the performance of tools like STM32Cube-AI and
TensorFlow Lite has demonstrated that quantization techniques significantly reduce energy
and memory consumption, making ML-based IDS viable for IoT networks with severe resource
constraints.

Building on TinyML, tiny FL (TinyFL) has emerged as a key paradigm that extends FL to
ultra-low-power edge devices. Unlike conventional FL, which often requires substantial com-
putational and communication resources, TinyFL is designed to accommodate the extreme
resource limitations of IoT devices by optimizing training architectures and communication
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strategies. By sharing only model weights or gradients instead of raw data, TinyFL mini-
mizes communication costs, reduces privacy risks, and lowers energy consumption, making it
a promising solution for IDS for IoT applications [7].

5.9.3 Future Directions

Future research should focus on optimizing the balance between security and energy efficiency
in FL-based IDS for IoT applications.

Privacy-preserving and energy-aware FL Techniques such as differential privacy and
secure aggregation enhance security but introduce computational overhead—balancing energy
efficiency and security remains an open problem.

Adaptive resource management and scheduling Future work should focus on develop-
ing energy-aware resource allocation mechanisms specifically optimized for federated learning
in heterogeneous IoT environments. This includes dynamic scheduling algorithms that adapt
to real-time energy profiles of devices, enabling task offloading and prioritization based on
residual energy levels. In addition, efficient load balancing and energy-aware client selection
strategies are essential to mitigate premature device dropout and ensure consistent partici-
pation in training. Such methods are critical to maintaining the long-term operability and
scalability of FL-based IDS.

TinyFL IDS in IoT applications While several TinyML frameworks exist, their in-
tegration with TinyFL remains limited. In addition, the lack of standardized frameworks
and benchmarking tools to evaluate TinyML deployments presents a significant challenge
to consistent evaluation of performance, scalability, and energy efficiency. Adapting these
platforms and validating them through real-world federated deployments would contribute
to demonstrating their effectiveness in FL-based IDS applications.

Integration of renewable energy sources Leveraging energy-harvesting techniques such
as solar, kinetic, or thermal energy can enhance the long-term sustainability of FL-based
IDS in energy-constrained IoT environments. These ambient energy sources enable devices
to operate with reduced reliance on battery power, minimizing the need for recharging or
replacements. Future FL-enabled IoT deployments may benefit from solar-powered or hybrid
energy solutions to ensure uninterrupted training and inference processes.
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Chapter 6

Conclusions and Future Directions

As communication systems continue to evolve at an unprecedented pace, emerging tech-
nologies are increasingly shaping both legitimate applications and the facilitation of (cy-
ber)criminal activities. While not intended to be exhaustive, this White Paper focuses on
the study of communication infrastructures, with particular attention to emerging wireless
technologies and their multiple facets, ranging from the physical layer to the application layer
and services.

Specifically, a bottom-up approach has been adopted to examine foundational constructs.
The document explores advances in physical communications interfaces, concepts of trust,
current cyber threats, and the adoption of intelligent AI models. Machine learning models
are analyzed through the lens of cybersecurity, with particular focus on Federated Learning
– recognized for its inherent benefits in enhancing privacy and minimizing the transmission
of sensitive user data – and Large Language Models (LLMs).

We argue that the dual perspectives of cybersecurity – namely, protection against “cyber
criminals” and the safeguarding of the “cyber human” – are intrinsically linked and must
be addressed in tandem. A comprehensive understanding of human-technology interaction
is essential for effectively exploring the human dimension of cybersecurity, as such insight is
critical for identifying and mitigating the underlying factors at play.

This White Paper is intended to serve as a preparatory document for future research
activities within the BEiNG-WISE initiative. It lays the groundwork for investigations into
advancements in cybersecurity, addressing cybercriminal activities enabled by modern au-
tomation and the use of AI systems, as well as advanced human-centered cybersecurity solu-
tions that explicitly integrate human factors by design.
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